论文标题

具有有限传播速度的随机过程的光谱特性

Spectral properties of stochastic processes possessing finite propagation velocity

论文作者

Giona, Massimiliano, Cairoli, Andrea, Cocco, Davide, Klages, Rainer

论文摘要

本文研究了与具有有限传播速度的随机过程的统计描述相关的进化算子的光谱结构。广义的泊松 - 卡克过程和莱维步道被明确视为常规和异常动力学的范式实例。这些过程的一般光谱特征是特征值光谱的实际部分的较低结合度,对应于光谱分散曲线的上限,物理表达了干扰的松弛率,这是波动矢量的函数。我们还分析了具有相对于速度参数参数的随机状态连续体的广义泊松-KAC过程。在这种情况下,存在波形的临界值,而斑点频谱不再存在,而松弛动力学则由光谱的基本部分控制。该模型可以扩展到量子情况,实际上,它代表了带有隐藏变量的亚量子动力学的简单而突出的示例。

This article investigates the spectral structure of the evolution operators associated with the statistical description of stochastic processes possessing finite propagation velocity. Generalized Poisson-Kac processes and Lévy walks are explicitly considered as paradigmatic examples of regular and anomalous dynamics. A generic spectral feature of these processes is the lower-boundedness of the real part of the eigenvalue spectrum, corresponding to an upper limit for the spectral dispersion curve, physically expressing the relaxation rate of a disturbance as a function of the wave vector. We analyze also Generalized Poisson-Kac processes possessing a continuum of stochastic states parametrized with respect to the velocity. In this case, there exists a critical value of the wavevector above which the point spectrum ceases to exist, and the relaxation dynamics becomes controlled by the essential part of the spectrum. This model can be extended to the quantum case and, in point of fact, it represents a simple and highlighting example of a sub-quantum dynamics with hidden variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源