论文标题

使用分位数回归和Granger因果关系探索金融网络

Exploring Financial Networks Using Quantile Regression and Granger Causality

论文作者

Karpman, Kara, Lahiry, Samriddha, Mukherjee, Diganta, Basu, Sumanta

论文摘要

在危机后时代,金融监管机构和政策制定者越来越对数据驱动的工具感兴趣,以衡量系统性风险并确定系统上重要的公司。近年来,基于Granger因果关系(GC)在金融公司之间建立网络的技术已受到了极大的关注。现有的GC网络方法模型有条件平均值,并且没有区分回报分布的下部和上尾的连通性 - 对于系统性风险分析至关重要的方面。我们建议使用基于系统范围的尾部分析来衡量金融部门中的连通性,并能够区分回报分布的上下尾部的连通性。这是使用基于常规和套索惩罚的分位数回归的双变量和多变量GC分析来实现的,这是我们称为STANILE GRANGER因果关系(QGC)的一种方法。通过考虑这些财务网络的中心度度量,我们可以评估系统性风险的积累并确定风险传播渠道。我们在分位数矢量自回归模型下提供了QGC估计量的渐近理论,并在模拟数据上显示了其对常规GC分析的好处。我们将我们的方法应用于美国大型公司的每月股票回报,并证明基于尾部的网络可以检测到具有比平均基网络更高的历史数据中的系统风险时期。在对大型印度银行的类似分析中,我们发现上下尾网提供了不同的信息,并有可能区分市场上正面与负面新闻所支配的高连通性时期。

In the post-crisis era, financial regulators and policymakers are increasingly interested in data-driven tools to measure systemic risk and to identify systemically important firms. Granger Causality (GC) based techniques to build networks among financial firms using time series of their stock returns have received significant attention in recent years. Existing GC network methods model conditional means, and do not distinguish between connectivity in lower and upper tails of the return distribution - an aspect crucial for systemic risk analysis. We propose statistical methods that measure connectivity in the financial sector using system-wide tail-based analysis and is able to distinguish between connectivity in lower and upper tails of the return distribution. This is achieved using bivariate and multivariate GC analysis based on regular and Lasso penalized quantile regressions, an approach we call quantile Granger causality (QGC). By considering centrality measures of these financial networks, we can assess the build-up of systemic risk and identify risk propagation channels. We provide an asymptotic theory of QGC estimators under a quantile vector autoregressive model, and show its benefit over regular GC analysis on simulated data. We apply our method to the monthly stock returns of large U.S. firms and demonstrate that lower tail based networks can detect systemically risky periods in historical data with higher accuracy than mean-based networks. In a similar analysis of large Indian banks, we find that upper and lower tail networks convey different information and have the potential to distinguish between periods of high connectivity that are governed by positive vs negative news in the market.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源