论文标题

在不断变化的条件下,在线域的适应语义细分

Online Domain Adaptation for Semantic Segmentation in Ever-Changing Conditions

论文作者

Panagiotakopoulos, Theodoros, Dovesi, Pier Luigi, Härenstam-Nielsen, Linus, Poggi, Matteo

论文摘要

无监督的域适应性(UDA)旨在减少训练和测试数据之间的域间隙,并在大多数情况下以离线方式进行。但是,域的变化可能在部署过程中不断发生,不可预测(例如,天气变化突然变化)。在这种情况下,深层神经网络证明了准确性的急剧下降,离线适应可能不足以对比。在本文中,我们解决了在线域适应(ONDA)进行语义细分。我们设计了一条可逐步或突然转移的域转移的管道,在多雨和有雾的情况下,我们对其进行了评估。我们的实验表明,我们的框架可以有效地适应部署期间的新域,而不受灾难性遗忘以前的域的影响。

Unsupervised Domain Adaptation (UDA) aims at reducing the domain gap between training and testing data and is, in most cases, carried out in offline manner. However, domain changes may occur continuously and unpredictably during deployment (e.g. sudden weather changes). In such conditions, deep neural networks witness dramatic drops in accuracy and offline adaptation may not be enough to contrast it. In this paper, we tackle Online Domain Adaptation (OnDA) for semantic segmentation. We design a pipeline that is robust to continuous domain shifts, either gradual or sudden, and we evaluate it in the case of rainy and foggy scenarios. Our experiments show that our framework can effectively adapt to new domains during deployment, while not being affected by catastrophic forgetting of the previous domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源