论文标题
托里和同源镜子对称性的侧壳麸皮
Coisotropic branes on tori and Homological mirror symmetry
论文作者
论文摘要
同源镜对称性(HMS)断言,符号歧管的福卡亚类别是相当于镜子复合物歧管上相干滑轮类别的类别。没有福卡亚类别的合适的扩大(分开闭合),它的某些对象就缺失了以防止HMS真实。一种可能的解决方案是将共同体麸的介绍到福卡亚类别中。本文通过使用加倍的程序为福卡亚类别的线性象征性摩尔群(包括共截式麸皮)提供了一个线性符号摩tori的结构,并讨论了双子福音的福卡亚类别与原始福鲁斯的福卡亚类别之间的关系。
Homological mirror symmetry (HMS) asserts that the Fukaya category of a symplectic manifold is derived equivalent to the category of coherent sheaves on the mirror complex manifold. Without suitable enlargement (split closure) of the Fukaya category, certain objects of it are missing to prevent HMS from being true. One possible solution is to include coisotropic branes into the Fukaya category. This paper gives a construction for linear symplectic tori of a version of Fukaya category including coisotropic branes by using a doubling procedure, and discussing the relation between the Fukaya category of the doubling torus and the Fukaya category of the original torus.