论文标题

一维性手性拓扑剂的纠缠和粒子波动

Entanglement and particle fluctuations of one-dimensional chiral topological insulators

论文作者

Monkman, K., Sirker, J.

论文摘要

我们考虑了缠绕的一维手性拓扑绝缘子的纠缠和粒子波动的拓扑保护,并具有绕组数$ \ Mathcal {i} $的拓扑保护。我们尤其证明,当周期系统在空间上分为两个相等的半半时,单粒子纠缠频谱的$ 2 | \ MATHCAL {i} | $ $ protwated eigenvalues以$ 1/2 $。因此,数字波动从下面的界限为$Δn^2 \ geq | \ mathcal {i} |/2 $和纠缠熵由$ s \ geq 2 | \ mathcal {i} | \ ln 2 $。我们注意到,我们的结果是通过将索引定理直接应用于微观模型获得的,并且不依赖于连续模型的等效性或用于慢变化边界的散装对应关系。

We consider the topological protection of entanglement and particle fluctuations for a general one-dimensional chiral topological insulator with winding number $\mathcal{I}$. We prove, in particular, that when the periodic system is divided spatially into two equal halves, the single-particle entanglement spectrum has $2|\mathcal{I}|$ protected eigenvalues at $1/2$. Therefore the number fluctuations are bounded from below by $ΔN^2\geq |\mathcal{I}|/2$ and the entanglement entropy by $S\geq 2|\mathcal{I}|\ln 2$. We note that our results are obtained by applying directly an index theorem to the microscopic model and do not rely on an equivalence to a continuum model or a bulk-boundary correspondence for a slow varying boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源