论文标题
超图的着色不足
Defective Colouring of Hypergraphs
论文作者
论文摘要
我们证明,每个$(r + 1)$ - 均匀的超图的顶点$ c(\fracδ{d + 1})^{1/r} $颜色可以将每个顶点均为$ d $ d $单色边缘。该结果最好是恒定$ c $的价值,它概括了Erdős和Lovász的经典结果,后者证明了$ d = 0 $ case。
We prove that the vertices of every $(r + 1)$-uniform hypergraph with maximum degree $Δ$ may be coloured with $c(\fracΔ{d + 1})^{1/r}$ colours such that each vertex is in at most $d$ monochromatic edges. This result, which is best possible up to the value of the constant $c$, generalises the classical result of Erdős and Lovász who proved the $d = 0$ case.