论文标题

$ \ wideHat {sl(2)} $某些BKM分母公式的分解superalgebras -ii

$\widehat{sl(2)}$ decomposition of denominator formulae of some BKM Lie superalgebras -- II

论文作者

Govindarajan, Suresh, Shabbir, Mohammad

论文摘要

II型压缩的Chl Z_N Orbifolds的Siegel模块化形式的平方根是某些Borcherds-Kac-Moody的分母公式,用于N = 1,2,3,4。我们根据两个子代数的特征来研究这些Siegel模块化形式的分解:一个是$ \ wideHat {sl(2)} $,第二个是$ \ wideHat {sl(2)} $的Borcherds扩展。这是我们以前的工作的延续,我们研究了在Umbral Moonshine背景下出现的Siegel模块化形式的情况。这种情况更加复杂,并为我们提供了在这种情况下没有出现的新示例(n = 5)。我们将分析限制为扩展中的前N术语,这是对Siegel模块化形式进行解构的首次尝试,并揭示了n = 5,6发生的潜在新谎言代数的结构。

The square-root of Siegel modular forms of CHL Z_N orbifolds of type II compactifications are denominator formulae for some Borcherds-Kac-Moody Lie superalgebras for N=1,2,3,4. We study the decomposition of these Siegel modular forms in terms of characters of two sub-algebras: one is a $\widehat{sl(2)}$ and the second is a Borcherds extension of the $\widehat{sl(2)}$. This is a continuation of our previous work where we studied the case of Siegel modular forms appearing in the context of Umbral moonshine. This situation is more intricate and provides us with a new example (for N=5) that did not appear in that case. We restrict our analysis to the first N terms in the expansion as a first attempt at deconstructing the Siegel modular forms and unravelling the structure of potentially new Lie algebras that occur for N=5,6.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源