论文标题
通过神经社会物理学的人类轨迹预测
Human Trajectory Prediction via Neural Social Physics
论文作者
论文摘要
轨迹预测已在许多领域广泛追求,并且已经探索了许多基于模型和模型的方法。前者包括基于规则的,几何或基于优化的模型,后者主要由深度学习方法组成。在本文中,我们提出了一种基于新的神经微分方程模型的新方法,结合了两种方法。我们的新模型(神经社会物理或NSP)是一个深层的神经网络,我们在该网络中使用具有可学习参数的显式物理模型。显式物理模型在对行人行为进行建模时是强大的感应偏见,而网络的其余部分就系统参数估计和动力学随机性建模提供了强大的数据拟合能力。我们将NSP与6个数据集上的15种深度学习方法进行了比较,并将最新性能提高了5.56%-70%。此外,我们表明,NSP在预测截然不同的情况下的合理轨迹方面具有更好的概括性,其中密度是测试数据的2-5倍。最后,我们表明NSP中的物理模型可以为行人行为提供合理的解释,而不是黑盒深度学习。可用代码:https://github.com/realcrane/human-trajectory-prediction-via-narur-social-physics。
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored. The former include rule-based, geometric or optimization-based models, and the latter are mainly comprised of deep learning approaches. In this paper, we propose a new method combining both methodologies based on a new Neural Differential Equation model. Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters. The explicit physics model serves as a strong inductive bias in modeling pedestrian behaviors, while the rest of the network provides a strong data-fitting capability in terms of system parameter estimation and dynamics stochasticity modeling. We compare NSP with 15 recent deep learning methods on 6 datasets and improve the state-of-the-art performance by 5.56%-70%. Besides, we show that NSP has better generalizability in predicting plausible trajectories in drastically different scenarios where the density is 2-5 times as high as the testing data. Finally, we show that the physics model in NSP can provide plausible explanations for pedestrian behaviors, as opposed to black-box deep learning. Code is available: https://github.com/realcrane/Human-Trajectory-Prediction-via-Neural-Social-Physics.