论文标题

Streamyolo:用于流媒体感知的实时对象检测

StreamYOLO: Real-time Object Detection for Streaming Perception

论文作者

Yang, Jinrong, Liu, Songtao, Li, Zeming, Li, Xiaoping, Sun, Jian

论文摘要

自主驾驶的知觉模型需要在低潜伏期内快速推断。虽然现有作品忽略了处理后不可避免的环境变化,但流媒体感知将延迟和准确性共同评估为视频在线感知的单个度量标准,从而指导先前的工作以搜索准确性和速度之间的权衡。在本文中,我们探讨了该指标上实时模型的性能,并赋予模型预测未来的能力,从而显着改善了流媒体感知的结果。具体来说,我们构建了一个具有两个有效模块的简单框架。一个是双流感知模块(DFP)。它分别与捕获运动趋势和基本检测特征平行的动态流和静态流程组成。趋势意识损失(TAL)是另一个模块,它以其移动速度适应每个对象的体重。实际上,我们考虑了多个速度驾驶现场,并进一步提出了含速度的流媒体AP(VSAP)来共同评估准确性。在这种现实的环境中,我们设计了一种有效的混合速度训练策略,以指导检测器感知任何速度。我们的简单方法与强大的基线相比,在Argoverse-HD数据集上实现了最新的性能,并将SAP和VSAP分别提高了4.7%和8.2%,从而验证了其有效性。

The perceptive models of autonomous driving require fast inference within a low latency for safety. While existing works ignore the inevitable environmental changes after processing, streaming perception jointly evaluates the latency and accuracy into a single metric for video online perception, guiding the previous works to search trade-offs between accuracy and speed. In this paper, we explore the performance of real time models on this metric and endow the models with the capacity of predicting the future, significantly improving the results for streaming perception. Specifically, we build a simple framework with two effective modules. One is a Dual Flow Perception module (DFP). It consists of dynamic flow and static flow in parallel to capture moving tendency and basic detection feature, respectively. Trend Aware Loss (TAL) is the other module which adaptively generates loss weight for each object with its moving speed. Realistically, we consider multiple velocities driving scene and further propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy. In this realistic setting, we design a efficient mix-velocity training strategy to guide detector perceive any velocities. Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively compared to the strong baseline, validating its effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源