论文标题
Hochschild同源性,跟踪地图和$ζ$ -CYCLE
Hochschild homology, trace map and $ζ$-cycles
论文作者
论文摘要
在本文中,我们考虑了Riemann Zeta函数的零的两个光谱实现。第一个涉及所有非平凡(非现实)零的零,并用与岩体波算子密切相关的laplacian表示。第二频谱实现仅影响关键零,并以捆捆的共同体为角度施放。新颖的是,基本空间是缩放站点扮演$ζ$ Cycles的参数空间的角色,并通过覆盖物编码其稳定性。
In this paper we consider two spectral realizations of the zeros of the Riemann zeta function. The first one involves all non-trivial (non-real) zeros and is expressed in terms of a Laplacian intimately related to the prolate wave operator. The second spectral realization affects only the critical zeros and it is cast in terms of sheaf cohomology. The novelty is that the base space is the Scaling Site playing the role of the parameter space for the $ζ$-cycles and encoding their stability by coverings.