论文标题

宇宙射线拒绝和注意力增强深度学习

Cosmic Ray Rejection with Attention Augmented Deep Learning

论文作者

Bhavanam, S. R., Channappayya, Sumohana S., Srijith, P. K., Desai, Shantanu

论文摘要

宇宙射线(CR)命中是涉及固态探测器的天文成像和光谱观测中的主要污染物。正确识别和掩盖它们是图像处理管道的关键部分,因为否则它可能会导致虚假检测。为此,我们开发了一个新型的基于深度学习的框架,以自动检测来自两个不同成像仪的天文成像数据的CR命中:深色能量摄像机(DECAM)和LAS CUMBRES天文台观测全球望远镜(LCOGT)。我们考虑了两种基线模型,即DeepCR和Cosmic-Conn,它们是当前基于最新学习的算法,这些算法是使用Hubble Space望远镜(HST)ACS/WFC和LCOGT网络图像训练的。我们已经尝试了使用注意门(AGS)增强基线模型以改善CR检测性能的想法。我们已经在DECAM数据上训练了模型,并通过在DECAM数据集的上述基线模型中以0.01%的假阳性率(FPR)为0.01%(FPR)以0.01%的假阳性率(FPR)(FPR)添加AG,并在95%TPR中表现出一致的边际改进。我们证明,当对以前看不见的LCO测试数据进行测试时,提出的AG增强模型在0.01%FPR的情况下为具有来自三个不同望远镜类别的图像进行测试。此外,我们证明了带有和没有注意力增强的提议的基线模型超过了最先进的模型,例如Astro-Scrappy,Maximask(在DECAM数据上接受本地培训)和预训练的基于地面的宇宙conn。这项研究表明,AG模块增强使我们能够获得更好的DEEPCR和宇宙模型,并提高其对看不见数据的概括能力。

Cosmic Ray (CR) hits are the major contaminants in astronomical imaging and spectroscopic observations involving solid-state detectors. Correctly identifying and masking them is a crucial part of the image processing pipeline, since it may otherwise lead to spurious detections. For this purpose, we have developed and tested a novel Deep Learning based framework for the automatic detection of CR hits from astronomical imaging data from two different imagers: Dark Energy Camera (DECam) and Las Cumbres Observatory Global Telescope (LCOGT). We considered two baseline models namely deepCR and Cosmic-CoNN, which are the current state-of-the-art learning based algorithms that were trained using Hubble Space Telescope (HST) ACS/WFC and LCOGT Network images respectively. We have experimented with the idea of augmenting the baseline models using Attention Gates (AGs) to improve the CR detection performance. We have trained our models on DECam data and demonstrate a consistent marginal improvement by adding AGs in True Positive Rate (TPR) at 0.01% False Positive Rate (FPR) and Precision at 95% TPR over the aforementioned baseline models for the DECam dataset. We demonstrate that the proposed AG augmented models provide significant gain in TPR at 0.01% FPR when tested on previously unseen LCO test data having images from three distinct telescope classes. Furthermore, we demonstrate that the proposed baseline models with and without attention augmentation outperform state-of-the-art models such as Astro-SCRAPPY, Maximask (that is trained natively on DECam data) and pre-trained ground-based Cosmic-CoNN. This study demonstrates that the AG module augmentation enables us to get a better deepCR and Cosmic-CoNN models and to improve their generalization capability on unseen data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源