论文标题

使用快捷方式测试检测公平医疗AI的快捷方式学习

Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing

论文作者

Brown, Alexander, Tomasev, Nenad, Freyberg, Jan, Liu, Yuan, Karthikesalingam, Alan, Schrouff, Jessica

论文摘要

机器学习(ML)具有改善医疗保健的巨大希望,但至关重要的是要确保其使用不会传播或扩大健康差异。一个重要的步骤是表征ML模型的(联合国)公平性 - 它们在人群的亚组中的表现趋势不同,并了解其潜在机制。当ML模拟培训数据中不正确相关的基本预测时,就会出现算法不公平,快捷学习的潜在驱动力。但是,诊断这种现象很困难,尤其是当敏感属性与疾病有因果关系时。使用多任务学习,我们提出了第一种评估和减轻快捷方式学习的方法,作为临床ML系统公平评估的一部分,并证明了其在放射学和皮肤病学中的临床任务中的应用。最后,我们的方法揭示了捷径对不公平不公平负责的情况,强调需要在医疗AI中采用整体方法来缓解公平性。

Machine learning (ML) holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities. An important step is to characterize the (un)fairness of ML models - their tendency to perform differently across subgroups of the population - and to understand its underlying mechanisms. One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data. However, diagnosing this phenomenon is difficult, especially when sensitive attributes are causally linked with disease. Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems, and demonstrate its application to clinical tasks in radiology and dermatology. Finally, our approach reveals instances when shortcutting is not responsible for unfairness, highlighting the need for a holistic approach to fairness mitigation in medical AI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源