论文标题
增强未来能量和碳中立能量的学习:挑战设计
Reinforcement learning for Energies of the future and carbon neutrality: a Challenge Design
论文作者
论文摘要
当前气候的快速变化增加了改变能源生产和消费管理的紧迫性,以减少碳和其他绿色房屋的生产。在这种情况下,法国电力网络管理公司RTE(r {é} Seau de Transport d'{é} Lectricit {é})最近发布了一项广泛的研究结果,概述了明天法国电力管理的各种情况。我们提出一个挑战,将测试这种情况的可行性。目的是控制电力网络中的电力运输,同时追求多种目标:平衡生产和消费,最大程度地减少能量损失,并确保人员和设备安全,尤其是避免灾难性的失败。尽管该应用程序的重要性本身提供了一个目标,但该挑战也旨在推动人工智能(AI)(AI)的最先进,称为增强学习(RL),该研究提供了解决控制问题的新可能性。特别是,在该应用领域中,深度学习和RL的组合的各个方面仍然需要利用。这个挑战属于2019年开始的系列赛,名称为“学习运行电力网络”(L2RPN)。在这个新版本中,我们介绍了RTE提出的新的更现实的场景,以便到2050年到达碳中立性,从而退休了化石燃料电力的产量,增加了可再生能源和核能的比例,并引入了电池。此外,我们使用最先进的加强学习算法提供了基线,以刺激未来的参与者。
Current rapid changes in climate increase the urgency to change energy production and consumption management, to reduce carbon and other green-house gas production. In this context, the French electricity network management company RTE (R{é}seau de Transport d'{É}lectricit{é}) has recently published the results of an extensive study outlining various scenarios for tomorrow's French power management. We propose a challenge that will test the viability of such a scenario. The goal is to control electricity transportation in power networks, while pursuing multiple objectives: balancing production and consumption, minimizing energetic losses, and keeping people and equipment safe and particularly avoiding catastrophic failures. While the importance of the application provides a goal in itself, this challenge also aims to push the state-of-the-art in a branch of Artificial Intelligence (AI) called Reinforcement Learning (RL), which offers new possibilities to tackle control problems. In particular, various aspects of the combination of Deep Learning and RL called Deep Reinforcement Learning remain to be harnessed in this application domain. This challenge belongs to a series started in 2019 under the name "Learning to run a power network" (L2RPN). In this new edition, we introduce new more realistic scenarios proposed by RTE to reach carbon neutrality by 2050, retiring fossil fuel electricity production, increasing proportions of renewable and nuclear energy and introducing batteries. Furthermore, we provide a baseline using state-of-the-art reinforcement learning algorithm to stimulate the future participants.