论文标题
关于量子检测器断层扫描的正则化和优化
On the regularization and optimization in quantum detector tomography
论文作者
论文摘要
量子检测器断层扫描(QDT)是一种校准量子设备和执行量子工程任务的基本技术。在本文中,每当探针状态在信息上完成或信息不完整时,我们都会利用正则化来提高QDT精度。在信息完整的情况下,如果没有正则化,我们通过将其转换为半限定编程问题来优化资源(探针状态)分布。然后,在信息上完整和信息不完整的情况下,我们讨论了不同的正则化表格,并证明平方平方误差量表为$ o(\ frac {1} {n})$,或者在静态假设下使用$ n $ state Copies的常数。我们还表征了可识别参数的理想最佳正则化,这既是信息完整和信息不完整的场景。数值示例证明了不同的正则化形式的有效性和量子光学实验测试表明,合适的正则化形式可以达到降低的平方误差。
Quantum detector tomography (QDT) is a fundamental technique for calibrating quantum devices and performing quantum engineering tasks. In this paper, we utilize regularization to improve the QDT accuracy whenever the probe states are informationally complete or informationally incomplete. In the informationally complete scenario, without regularization, we optimize the resource (probe state) distribution by converting it to a semidefinite programming problem. Then in both the informationally complete and informationally incomplete scenarios, we discuss different regularization forms and prove the mean squared error scales as $ O(\frac{1}{N}) $ or tends to a constant with $ N $ state copies under the static assumption. We also characterize the ideal best regularization for the identifiable parameters, accounting for both the informationally complete and informationally incomplete scenarios. Numerical examples demonstrate the effectiveness of different regularization forms and a quantum optical experiment test shows that a suitable regularization form can reach a reduced mean squared error.