论文标题

知识增强的黑盒攻击建议

Knowledge-enhanced Black-box Attacks for Recommendations

论文作者

Chen, Jingfan, Fan, Wenqi, Zhu, Guanghui, Zhao, Xiangyu, Yuan, Chunfeng, Li, Qing, Huang, Yihua

论文摘要

最近的研究表明,基于神经网络的深层推荐系统容易受到对抗性攻击的影响,在这种情况下,攻击者可以在其中注入精心制作的虚假用户概况(即,伪造用户已经与之互动的一组项目)将其注入目标推荐系统,以实现恶意目的,例如促进或降低一组目标项目。由于安全性和隐私问题,在黑框设置下执行对抗性攻击更为实用,在黑框设置下,攻击者无法轻松访问目标系统的体系结构/参数和培训数据。但是,在Black-Box设置下生成高质量的伪造用户资料,对于目标系统的资源有限,这是一项挑战。为了应对这一挑战,在这项工作中,我们通过利用项目的属性信息(即项目知识图)引入了一种新颖的策略,这些信息可以公开访问并提供丰富的辅助知识来增强伪造用户配置文件的产生。更具体地说,我们提出了一种知识增强的黑框攻击框架(KGATTACK),以通过深度强化学习技术有效地学习攻击策略,其中知识图无缝集成到层次结构策略网络中,以生成伪造的用户概要,以执行对抗性黑盒攻击。在各种现实世界数据集上进行的全面实验证明了在黑框设置下提出的攻击框架的有效性。

Recent studies have shown that deep neural networks-based recommender systems are vulnerable to adversarial attacks, where attackers can inject carefully crafted fake user profiles (i.e., a set of items that fake users have interacted with) into a target recommender system to achieve malicious purposes, such as promote or demote a set of target items. Due to the security and privacy concerns, it is more practical to perform adversarial attacks under the black-box setting, where the architecture/parameters and training data of target systems cannot be easily accessed by attackers. However, generating high-quality fake user profiles under black-box setting is rather challenging with limited resources to target systems. To address this challenge, in this work, we introduce a novel strategy by leveraging items' attribute information (i.e., items' knowledge graph), which can be publicly accessible and provide rich auxiliary knowledge to enhance the generation of fake user profiles. More specifically, we propose a knowledge graph-enhanced black-box attacking framework (KGAttack) to effectively learn attacking policies through deep reinforcement learning techniques, in which knowledge graph is seamlessly integrated into hierarchical policy networks to generate fake user profiles for performing adversarial black-box attacks. Comprehensive experiments on various real-world datasets demonstrate the effectiveness of the proposed attacking framework under the black-box setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源