论文标题

恶意软件分类方法使用基于元转移学习框架的任务存储器

Malware Triage Approach using a Task Memory based on Meta-Transfer Learning Framework

论文作者

Zhu, Jinting, Jang-Jaccard, Julian, Welch, Ian, Al-Sahaf, Harith, Camtepe, Seyit

论文摘要

为了提高事件响应分类操作的效率,在复杂的网络环境中平等地捍卫所有系统并不具有成本效益。取而代之的是,优先考虑关键功能和最脆弱的系统的优先级是可取的。威胁情报对于指导安全操作中心(SOC)分析师对特定系统活动的关注至关重要,并为解释安全警报提供了主要的上下文基础。本文探讨了改善事件响应分类操作的新方法,包括处理攻击和零日恶意软件。已经提出了这种快速优先考虑不同恶意软件的解决方案,以制定快速响应计划,以最大程度地减少近年来恶意软件攻击大规模增长的社会经济损害,也可以将其扩展到其他事件响应。我们提出了一种恶意软件分类方法,该方法可以快速对不同的恶意软件类别进行分类并优先解决此问题。我们利用基于暹罗神经网络(SNN)的预训练的RESNET18网络来减少权重和参数的偏见。此外,我们的方法结合了外部任务内存,以保留先前遇到的示例的任务信息。这有助于将经验转移到新样本并降低计算成本,而无需在外部内存上反射。评估结果表明,我们提出的方法的分类方面在性能方面超过了其他类似的分类技术。这种基于任务记忆的新的分类策略和元学习策略评估了跨恶意软件类别匹配的相似性级别,以确定任何风险和未知的恶意软件(例如,零日攻击),以便可以对支持关键功能的人进行辩护。

To enhance the efficiency of incident response triage operations, it is not cost-effective to defend all systems equally in a complex cyber environment. Instead, prioritizing the defense of critical functionality and the most vulnerable systems is desirable. Threat intelligence is crucial for guiding Security Operations Center (SOC) analysts' focus toward specific system activity and provides the primary contextual foundation for interpreting security alerts. This paper explores novel approaches for improving incident response triage operations, including dealing with attacks and zero-day malware. This solution for rapid prioritization of different malware have been raised to formulate fast response plans to minimize socioeconomic damage from the massive growth of malware attacks in recent years, it can also be extended to other incident response. We propose a malware triage approach that can rapidly classify and prioritize different malware classes to address this concern. We utilize a pre-trained ResNet18 network based on Siamese Neural Network (SNN) to reduce the biases in weights and parameters. Furthermore, our approach incorporates external task memory to retain the task information of previously encountered examples. This helps to transfer experience to new samples and reduces computational costs, without requiring backpropagation on external memory. Evaluation results indicate that the classification aspect of our proposed method surpasses other similar classification techniques in terms of performance. This new triage strategy based on task memory with meta-learning evaluates the level of similarity matching across malware classes to identify any risky and unknown malware (e.g., zero-day attacks) so that a defense of those that support critical functionality can be conducted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源