论文标题
弱孤立的视野:$ 3+1 $分解和自二变量的规范配方
Weakly Isolated Horizons: $3+1$ decomposition and canonical formulations in self-dual variables
论文作者
论文摘要
孤立的视野的概念在重力物理学中起着重要作用,这是由于黑洞合并的端点与(量子)黑洞熵的表征有用。特别地,{\ it弱}孤立的视野(WIHS)作为事件范围的准局部概括纯粹是几何的,并且独立于描述重力场时使用的变量。在这里,我们考虑了从一阶操作开始的连接和Vierbein变量的一般相对性的规范分解。在这种方法中,通过在所考虑的时空区域的内部边界上的一组边界条件获得了有关(弱)隔离视野的存在的信息。我们采用自动划分的动作,是对具有边界区域的Dirac算法的概括。虽然用边界处理仪表理论的形式主义是明确的,但边界上动态变量的选择却不是。我们探索了这种自由,并考虑了由WIHS定义的非旋转黑洞的不同规范配方。我们表明,即使描述可能是自一致的,与地平线相关的自由和能量的地平线自由度和能量的概念都不是唯一的。这代表了先前在孤立的视野上的概括在探索这种自由和所考虑的视野类型中。我们评论文献中发现的先前结果。
The notion of Isolated Horizons has played an important role in gravitational physics, being useful from the characterization of the endpoint of black hole mergers to (quantum) black hole entropy. In particular, the definition of {\it weakly} isolated horizons (WIHs) as quasilocal generalizations of event horizons is purely geometrical, and is independent of the variables used in describing the gravitational field. Here we consider a canonical decomposition of general relativity in terms of connection and vierbein variables starting from a first order action. Within this approach, the information about the existence of a (weakly) isolated horizon is obtained through a set of boundary conditions on an internal boundary of the spacetime region under consideration. We employ, for the self-dual action, a generalization of the Dirac algorithm for regions with boundary. While the formalism for treating gauge theories with boundaries is unambiguous, the choice of dynamical variables on the boundary is not. We explore this freedom and consider different canonical formulations for non-rotating black holes as defined by WIHs. We show that both the notion of horizon degrees of freedom and energy associated to the horizon is not unique, even when the descriptions might be self-consistent. This represents a generalization of previous work on isolated horizons both in the exploration of this freedom and in the type of horizons considered. We comment on previous results found in the literature.