论文标题

使用深度学习模型评估小儿骨龄段评估

Pediatric Bone Age Assessment using Deep Learning Models

论文作者

Raman, Aravinda, Pathan, Sameena, Ali, Tanweer

论文摘要

骨骼年龄评估(BAA)是确定骨骼和年代年龄之间年龄差异的标准方法。手动流程很复杂,需要专家的专业知识。这是深度学习发挥作用的地方。在这项研究中,使用VGG-16,InceptionV3,XceptionNet和Mobilenet等预训练的模型来评估输入数据的骨骼年龄,并比较并评估其平均平均误差并评估哪种模型可以预测最佳。

Bone age assessment (BAA) is a standard method for determining the age difference between skeletal and chronological age. Manual processes are complicated and necessitate the expertise of experts. This is where deep learning comes into play. In this study, pre-trained models like VGG-16, InceptionV3, XceptionNet, and MobileNet are used to assess the bone age of the input data, and their mean average errors are compared and evaluated to see which model predicts the best.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源