论文标题

通过柱子生成约束的规定树

Constrained Prescriptive Trees via Column Generation

论文作者

Subramanian, Shivaram, Sun, Wei, Drissi, Youssef, Ettl, Markus

论文摘要

借助大量可用数据,许多企业寻求实施以数据为基础的规范分析,以帮助他们做出明智的决定。这些规定的政策需要满足操作约束,并主动消除规则冲突,这两者在实践中都是无处不在的。他们也需要简单且可解释,因此可以轻松地验证和实施它们。文献中的现有方法围绕构建规范决策树的变体以产生可解释的政策。但是,现有方法都无法处理约束。在本文中,我们提出了一种可扩展的方法,该方法解决了受限的规定政策生成问题。我们介绍了一种新型的基于路径的混合智能程序(MIP)公式,该计划通过列生成有效地标识了(接近)最佳策略。生成的策略可以表示为多路开的树,由于其较短的规则,它比二进制树更容易解释和信息。我们通过对合成数据集和真实数据集进行了广泛的实验来证明我们方法的功效。

With the abundance of available data, many enterprises seek to implement data-driven prescriptive analytics to help them make informed decisions. These prescriptive policies need to satisfy operational constraints, and proactively eliminate rule conflicts, both of which are ubiquitous in practice. It is also desirable for them to be simple and interpretable, so they can be easily verified and implemented. Existing approaches from the literature center around constructing variants of prescriptive decision trees to generate interpretable policies. However, none of the existing methods are able to handle constraints. In this paper, we propose a scalable method that solves the constrained prescriptive policy generation problem. We introduce a novel path-based mixed-integer program (MIP) formulation which identifies a (near) optimal policy efficiently via column generation. The policy generated can be represented as a multiway-split tree which is more interpretable and informative than a binary-split tree due to its shorter rules. We demonstrate the efficacy of our method with extensive experiments on both synthetic and real datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源