论文标题

解决域移动下的长尾类别分布

Tackling Long-Tailed Category Distribution Under Domain Shifts

论文作者

Gu, Xiao, Guo, Yao, Li, Zeju, Qiu, Jianing, Dou, Qi, Liu, Yuxuan, Lo, Benny, Yang, Guang-Zhong

论文摘要

当1)培训数据集的类别分布p(y)遭受长尾巴分布和2)2)测试数据是从不同条件分布p(x | y)绘制的。现有方法无法处理存在两个问题的方案,但是对于现实世界应用程序来说,这很常见。在这项研究中,我们向前迈出了一步,研究了域转移下的长尾分类问题。我们设计了三个新颖的核心功能块,包括分布校准的分类损失,视觉语义映射和语义相似性引导的增强。此外,我们采用了一个元学习框架,该框架集成了这三个区块,以改善对看不见的目标域的域概括。为此问题提出了两个新数据集,称为AWA2-LTS和Imagenet-LTS。我们在两个数据集上评估了我们的方法,并且广泛的实验结果表明,我们提出的方法可以比最新的长尾/域概括方法和组合实现优越的性能。源代码和数据集可以在我们的项目页面https://xiaogu.site/ltds上找到。

Machine learning models fail to perform well on real-world applications when 1) the category distribution P(Y) of the training dataset suffers from long-tailed distribution and 2) the test data is drawn from different conditional distributions P(X|Y). Existing approaches cannot handle the scenario where both issues exist, which however is common for real-world applications. In this study, we took a step forward and looked into the problem of long-tailed classification under domain shifts. We designed three novel core functional blocks including Distribution Calibrated Classification Loss, Visual-Semantic Mapping and Semantic-Similarity Guided Augmentation. Furthermore, we adopted a meta-learning framework which integrates these three blocks to improve domain generalization on unseen target domains. Two new datasets were proposed for this problem, named AWA2-LTS and ImageNet-LTS. We evaluated our method on the two datasets and extensive experimental results demonstrate that our proposed method can achieve superior performance over state-of-the-art long-tailed/domain generalization approaches and the combinations. Source codes and datasets can be found at our project page https://xiaogu.site/LTDS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源