论文标题
第一原理的机器学习计算铁磁材料的材料特性
Machine Learning for First Principles Calculations of Material Properties for Ferromagnetic Materials
论文作者
论文摘要
使用Monte-Carlo(MC)方法对有限温度特性进行研究需要对系统的Hamiltonian进行大量评估,以品尝获得物理可观察物作为温度功能所需的相空间。 DFT计算可以提供对能量的准确评估,但是对于常规模拟而言,它们在计算上太昂贵。为了解决这个问题,基于机器学习(ML)的替代模型已在高性能计算(HPC)体系结构上开发并实施。在本文中,我们将两种ML方法(线性混合模型和Hydragnn)描述为使用经典MC模拟的第一原理密度功能理论(DFT)计算的替代物。这两个替代模型用于学习目标物理特性的依赖性,并从其成分的复杂组成和相互作用中学习。我们介绍了这两个替代模型相对于它们的复杂性的预测性能,同时避免了过度拟合模型的危险。我们方法的一个重要方面是,基于MC模拟对系统相位空间的逐步探索,具有新生成的第一原理数据的定期重新培训。数值结果表明,与磁合金材料的线性混合模型相比,Hydragnn模型具有优异的预测性能。
The investigation of finite temperature properties using Monte-Carlo (MC) methods requires a large number of evaluations of the system's Hamiltonian to sample the phase space needed to obtain physical observables as function of temperature. DFT calculations can provide accurate evaluations of the energies, but they are too computationally expensive for routine simulations. To circumvent this problem, machine-learning (ML) based surrogate models have been developed and implemented on high-performance computing (HPC) architectures. In this paper, we describe two ML methods (linear mixing model and HydraGNN) as surrogates for first principles density functional theory (DFT) calculations with classical MC simulations. These two surrogate models are used to learn the dependence of target physical properties from complex compositions and interactions of their constituents. We present the predictive performance of these two surrogate models with respect to their complexity while avoiding the danger of overfitting the model. An important aspect of our approach is the periodic retraining with newly generated first principles data based on the progressive exploration of the system's phase space by the MC simulation. The numerical results show that HydraGNN model attains superior predictive performance compared to the linear mixing model for magnetic alloy materials.