论文标题
holismokes-X。神经网络与半自动晶状体的传统建模之间的比较
HOLISMOKES -- X. Comparison between neural network and semi-automated traditional modeling of strong lenses
论文作者
论文摘要
为了将其用作天体物理或宇宙学探针,通常需要对重力镜头的星系进行建模。随着当前和即将进行的宽视野成像调查,检测到的镜头的数量正在显着增加,因此迫切需要对地面数据的自动化和快速建模程序。这尤其与短寿命的透明瞬变有关,以计划后续观察。因此,我们在同伴论文(提交的)神经网络中提出了一个神经网络,该神经网络用外部剪切的奇异等温椭圆形(SIE)质量谱的相应不确定性预测参数值。在这项工作中,我们提出了一个新开发的管道glee_auto.py,以始终如一地对任何星系尺度的镜头系统建模。与先前需要高分辨率图像的自动建模管道相比,Glee_auto.py针对地面图像进行了优化,例如来自HyperSuprime-Cam(HSC)的图像或即将进行的Rubin rubin天文台对空间和时间的调查。我们进一步介绍了glee_tools.py,这是一种灵活的自动化代码,用于没有直接决策和假设。除了我们的建模网络外,这两个管道都大大减少用户输入时间,因此对于将来的建模工作非常重要。我们将网络应用于HSC的31个真实的星系尺度镜头,并将结果与传统模型进行比较。在直接比较中,我们发现爱因斯坦半径非常匹配,尤其是对于$θ_e\ gtrsim 2 $的系统,镜头质量中心和椭圆度显示出合理的一致性。主要的差异是在我们预期的外部剪切上,如我们的测试所预期的。在我们的模拟系统上,我们的研究表明,我们的研究表明,在我们的研究中,我们的研究表明,在我们的研究中,我们的群体是可行的,并且群众群体是衡量的,并且是超快的态度。即将到来的时代,预计有$ \ sim10^5 $镜头。
Modeling of strongly gravitationally lensed galaxies is often required in order to use them as astrophysical or cosmological probes. With current and upcoming wide-field imaging surveys, the number of detected lenses is increasing significantly such that automated and fast modeling procedures for ground-based data are urgently needed. This is especially pertinent to short-lived lensed transients in order to plan follow-up observations. Therefore, we present in a companion paper (submitted) a neural network predicting the parameter values with corresponding uncertainties of a Singular Isothermal Ellipsoid (SIE) mass profile with external shear. In this work, we present a newly-developed pipeline glee_auto.py to model consistently any galaxy-scale lensing system. In contrast to previous automated modeling pipelines that require high-resolution images, glee_auto.py is optimized for ground-based images such as those from the Hyper-Suprime-Cam (HSC) or the upcoming Rubin Observatory Legacy Survey of Space and Time. We further present glee_tools.py, a flexible automation code for individual modeling that has no direct decisions and assumptions implemented. Both pipelines, in addition to our modeling network, minimize the user input time drastically and thus are important for future modeling efforts. We apply the network to 31 real galaxy-scale lenses of HSC and compare the results to the traditional models. In the direct comparison, we find a very good match for the Einstein radius especially for systems with $θ_E \gtrsim 2$". The lens mass center and ellipticity show reasonable agreement. The main discrepancies are on the external shear as expected from our tests on mock systems. In general, our study demonstrates that neural networks are a viable and ultra fast approach for measuring the lens-galaxy masses from ground-based data in the upcoming era with $\sim10^5$ lenses expected.