论文标题

量子限制的毫米波到光学转导

Quantum-limited millimeter wave to optical transduction

论文作者

Kumar, Aishwarya, Suleymanzade, Aziza, Stone, Mark, Taneja, Lavanya, Anferov, Alexander, Schuster, David I., Simon, Jonathan

论文摘要

量子信息的长距离传输是用于计算和安全通信的分布式量子信息处理器的核心成分。超导/固态量子处理器之间的传播需要将单个微波光子转导向光学光子。当前的转导方法采用电气和光学域之间的固态联系,面临着高转换效率和带宽所需的强经典泵所添加的热噪声的挑战。中性原子是一种有吸引力的替代传感器:它们在基础状态下强烈地与光学光子以及其rydberg状态下的微波/毫米波光子。尽管如此,在低温环境中,原子与两种光子的强耦合尚未实现。在这里,我们证明了使用冷$^{85} $ rb原子作为换能器的量子波(mmwave)光子的量子限制转导到光学光子中。我们通过同时将原子的合奏与在低温($ 5 $ K)环境中同时耦合原子合奏,并在首次使用的,可光学上可访问的三维超导谐振器和振动下抑制光腔。我们的内部转换效率为$ 58(11)\%$,转换带宽为$ 360(20)$ kHz,并添加了$ 0.6 $光子的热噪声,与无参数的理论一致。该技术的扩展将允许MMWAVE和微波制度的接近空调效率转换。从更广泛的角度来看,这个最先进的平台开设了一个新的混合MMWAVE/光学量子科学领域,并在强耦合方案中进行操作前景,以有效地生成阶段或计算上有用的纠缠状态,并具有强烈​​的非局部相互作用的量子模拟/计算。

Long distance transmission of quantum information is a central ingredient of distributed quantum information processors for both computing and secure communication. Transmission between superconducting/solid-state quantum processors necessitates transduction of individual microwave photons to optical photons. Current approaches to transduction employ solid state links between electrical and optical domains, facing challenges from the thermal noise added by the strong classical pumps required for high conversion efficiency and bandwidth. Neutral atoms are an attractive alternative transducer: they couple strongly to optical photons in their ground states, and to microwave/millimeter-wave photons in their Rydberg states. Nonetheless, strong coupling of atoms to both types of photons, in a cryogenic environment to minimize thermal noise, has yet to be achieved. Here we demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $^{85}$Rb atoms as the transducer. We achieve this by coupling an ensemble of atoms simultaneously to a first-of-its-kind, optically accessible three-dimensional superconducting resonator, and a vibration suppressed optical cavity, in a cryogenic ($5$ K) environment. We measure an internal conversion efficiency of $58(11)\%$, a conversion bandwidth of $360(20)$ kHz and added thermal noise of $0.6$ photons, in agreement with a parameter-free theory. Extensions to this technique will allow near-unity efficiency transduction in both the mmwave and microwave regimes. More broadly, this state-of-the-art platform opens a new field of hybrid mmwave/optical quantum science, with prospects for operation deep in the strong coupling regime for efficient generation of metrologically or computationally useful entangled states and quantum simulation/computation with strong nonlocal interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源