论文标题

QCD中的Twist-Two操作员的重新归一化及其在单线分裂功能中的应用

Renormalization of twist-two operators in QCD and its application to singlet splitting functions

论文作者

Gehrmann, Thomas, von Manteuffel, Andreas, Yang, Tong-Zhi

论文摘要

分裂功能控制Parton分布函数的规模演变。通过Mellin的转化,它们与操作员产品扩展中的Twist-Two操作员的异常尺寸有关。我们研究了脱壳操作员矩阵元素,其中物理操作员将重新归一化的物理运算符与其他量子数的其他规变量算子混合在一起。我们设计了一种新的方法,可以系统地提取这些操作员而不了解操作员本身的Feynman规则。作为新方法的第一个应用,我们独立地重现了从壳数量计算中获得的众所周知的三环分裂功能。

Splitting functions govern the scale evolution of parton distribution functions. Through a Mellin transformation, they are related to anomalous dimensions of twist-two operators in the operator product expansion. We study off-shell operator matrix element, where the physical operators mix under renormalization with other gauge-variant operators of the same quantum numbers. We devise a new method to systematically extract the Feynman rules resulting from those operators without knowing the operators themselves. As a first application of the new approach, we independently reproduce the well-known three-loop singlet splitting functions obtained from computations of on-shell quantities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源