论文标题

几乎分裂地图,转换定理和平滑纤维定理

Almost splitting maps, transformation theorems and smooth fibration theorems

论文作者

Huang, Hongzhi, Huang, Xian-Tao

论文摘要

在本文中,我们介绍了一个称为广义的Reifenberg条件的概念,在该概念下,我们证明了在下面界定的RICCI曲率折叠的折叠式折叠定理,在下面有RICCI曲率,在许多先前的作品中提供了平滑纤维化定理的统一证明(包括福卡亚和Yamaguchi分别证明的作品)。该纤维化定理证明的一个关键工具是用于几乎分裂地图的转换技术,该技术源自Cheeger-naber(\ cite {cn})和cheeger-jiang-naber(\ cite {cjn21})。更准确地说,我们表明,Cheeger-Jiang-Naber的转换定理(请参阅\ cite {CJN21})的命题7.7)可能会使可能崩溃的歧管(cjn21}})。本文给出了转换定理的其他一些应用。

In this paper, we introduce a notion, called generalized Reifenberg condition, under which we prove a smooth fibration theorem for collapsed manifolds with Ricci curvature bounded below, which gives a unified proof of smooth fibration theorems in many previous works (including the ones proved by Fukaya and Yamaguchi respectively). A key tool in the proof of this fibration theorem is the transformation technique for almost splitting maps, which originates from Cheeger-Naber (\cite{CN}) and Cheeger-Jiang-Naber (\cite{CJN21}). More precisely, we show that a transformation theorem of Cheeger-Jiang-Naber (see Proposition 7.7 in \cite{CJN21}) holds for possibly collapsed manifolds. Some other applications of the transformation theorems are given in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源