论文标题
减轻注释有限的减轻算法偏差
Mitigating Algorithmic Bias with Limited Annotations
论文作者
论文摘要
关于公平建模的现有工作通常假设所有实例的敏感属性都已完全可用,由于获取敏感信息的高成本,在许多现实世界中,这可能并非如此。当未披露或可用的敏感属性时,需要手动注释培训数据的一小部分以减轻偏见。但是,跨不同敏感组的偏斜分布保留了带注释的子集中原始数据集的偏度,这导致了非最佳偏置缓解。为了应对这一挑战,我们提出了对歧视(APOD)的积极惩罚,这是一个交互式框架,旨在指导有限的注释以最大程度地消除算法偏见的影响。拟议的APOD将歧视惩罚与主动实例选择集成在一起,以有效地利用有限的注释预算,从理论上讲,它可以限制算法偏见。根据对五个基准数据集的评估,APOD在有限的注释预算下优于最先进的基线方法,并显示出与完全注释的偏见缓解相当的性能,这表明当敏感信息有限时,APOD可以使真实世界应用受益。
Existing work on fairness modeling commonly assumes that sensitive attributes for all instances are fully available, which may not be true in many real-world applications due to the high cost of acquiring sensitive information. When sensitive attributes are not disclosed or available, it is needed to manually annotate a small part of the training data to mitigate bias. However, the skewed distribution across different sensitive groups preserves the skewness of the original dataset in the annotated subset, which leads to non-optimal bias mitigation. To tackle this challenge, we propose Active Penalization Of Discrimination (APOD), an interactive framework to guide the limited annotations towards maximally eliminating the effect of algorithmic bias. The proposed APOD integrates discrimination penalization with active instance selection to efficiently utilize the limited annotation budget, and it is theoretically proved to be capable of bounding the algorithmic bias. According to the evaluation on five benchmark datasets, APOD outperforms the state-of-the-arts baseline methods under the limited annotation budget, and shows comparable performance to fully annotated bias mitigation, which demonstrates that APOD could benefit real-world applications when sensitive information is limited.