论文标题

彩色无效

The Chromatic Nullstellensatz

论文作者

Burklund, Robert, Schlank, Tomer M., Yuan, Allen

论文摘要

我们表明,在$ t(n)$ - 本地$ \ mathbb {e} _ {\ infty} $中,附加到代数封闭字段的lubin-tate理论是在满足希尔伯特nullstellenstellensatz的模拟的$ t(n)$中。此外,我们表明,对于每$ t(n)$ - 本地$ \ mathbb {e} _ {\ infty} $ - ring $ r $,收集$ \ mathbb {e} _ \ infty $ - iffty $ - r $ $ r $从$ r $从$ r $到这种Lubin-tate TATE TATE TATE TATE TATE TATE TATE tate tate tate tate tate nillply nililpotence。特别是,我们推断出每个非零$ t(n)$ - 本地$ \ mathbb {e} _ {\ infty} $ - ring $ r $允许到$ \ mathbb {e} _ \ infty $ -ring $ - infty $ - rubin-lubin-tate理论。作为结果,我们构造了$ \ mathbb {e} _ {\ infty} $代数封闭的lubin-tate理论的复杂方向,计算此类lubin-tate理论的严格PICARD光谱,并证明了代数$ \ Mathrm {k} $ - 理论的redshift $ \ mathbb {e} _ {\ infty} $ - 戒指。

We show that Lubin--Tate theories attached to algebraically closed fields are characterized among $T(n)$-local $\mathbb{E}_{\infty}$-rings as those that satisfy an analogue of Hilbert's Nullstellensatz. Furthermore, we show that for every $T(n)$-local $\mathbb{E}_{\infty}$-ring $R$, the collection of $\mathbb{E}_\infty$-ring maps from $R$ to such Lubin-Tate theories jointly detect nilpotence. In particular, we deduce that every non-zero $T(n)$-local $\mathbb{E}_{\infty}$-ring $R$ admits an $\mathbb{E}_\infty$-ring map to such a Lubin-Tate theory. As consequences, we construct $\mathbb{E}_{\infty}$ complex orientations of algebraically closed Lubin-Tate theories, compute the strict Picard spectra of such Lubin-Tate theories, and prove redshift for the algebraic $\mathrm{K}$-theory of arbitrary $\mathbb{E}_{\infty}$-rings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源