论文标题

后继表示主动推理

Successor Representation Active Inference

论文作者

Millidge, Beren, Buckley, Christopher L

论文摘要

最近的工作发现了经典的加固学习算法,贝叶斯过滤和主动推断之间的紧密联系,这使我们可以从贝叶斯后期来理解价值功能。一种替代性但较少的无模型RL算法是后继表示,它以预期未来状态占领的后继矩阵来表达价值函数。在本文中,我们根据贝叶斯过滤得出了后继表示的概率解释,从而设计了一种新型的主动推理代理体系结构,利用后继表示而不是基于模型的计划。我们证明,积极推理后继表示在计划范围和计算成本方面,与当前主动推理代理相比具有显着优势。此外,我们演示了后继代理如何推广到改变奖励功能(例如预期自由能的变体)。

Recent work has uncovered close links between between classical reinforcement learning algorithms, Bayesian filtering, and Active Inference which lets us understand value functions in terms of Bayesian posteriors. An alternative, but less explored, model-free RL algorithm is the successor representation, which expresses the value function in terms of a successor matrix of expected future state occupancies. In this paper, we derive the probabilistic interpretation of the successor representation in terms of Bayesian filtering and thus design a novel active inference agent architecture utilizing successor representations instead of model-based planning. We demonstrate that active inference successor representations have significant advantages over current active inference agents in terms of planning horizon and computational cost. Moreover, we demonstrate how the successor representation agent can generalize to changing reward functions such as variants of the expected free energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源