论文标题

在极端海平面估计中考虑季节性

Accounting for Seasonality in Extreme Sea Level Estimation

论文作者

D'Arcy, Eleanor, Tawn, Jonathan A., Joly, Amélie, Sifnioti, Dafni E.

论文摘要

对海平面回报水平的可靠估计对于沿海洪水风险评估和沿海防洪设计至关重要。我们描述了一种估计极端海平面的新方法,该方法是第一个捕获季节性,年际变化和长期变化的方法。我们使用一种联合概率方法,偏向潮流和峰值潮汐作为两个海平面成分。潮汐状态是可以预测的,但偏斜的潮流是随机的。我们提出了一个偏斜潮流的统计模型,其中分布的主体在经验上进行了建模,而非平稳的广义帕累托分布(GPD)用于上尾。我们通过在GPD模型中引入每日协变量,并允许峰值潮汐在数月和几年内变化,来捕获一年中的季节性。偏度潮汐潮汐依赖性是通过GPD模型中的潮汐协变量来解释的,我们通过亚震荡的极端指数调整了偏差的时间依赖性。我们在GPD模型中纳入了空间先验信息,以减少与最高回报水平估计相关的不确定性。我们的结果是对当前回报级估计值的改进,以前的方法通常低估了。我们在四个英国潮汐仪上说明了我们的方法。

Reliable estimates of sea level return levels are crucial for coastal flooding risk assessments and for coastal flood defence design. We describe a novel method for estimating extreme sea levels that is the first to capture seasonality, interannual variations and longer term changes. We use a joint probabilities method, with skew surge and peak tide as two sea level components. The tidal regime is predictable but skew surges are stochastic. We present a statistical model for skew surges, where the main body of the distribution is modelled empirically whilst a non-stationary generalised Pareto distribution (GPD) is used for the upper tail. We capture within-year seasonality by introducing a daily covariate to the GPD model and allowing the distribution of peak tides to change over months and years. Skew surge-peak tide dependence is accounted for via a tidal covariate in the GPD model and we adjust for skew surge temporal dependence through the subasymptotic extremal index. We incorporate spatial prior information in our GPD model to reduce the uncertainty associated with the highest return level estimates. Our results are an improvement on current return level estimates, with previous methods typically underestimating. We illustrate our method at four UK tide gauges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源