论文标题
UNIF:衣服的人类重建和动画的联合神经隐式功能
UNIF: United Neural Implicit Functions for Clothed Human Reconstruction and Animation
论文作者
论文摘要
我们提出了联合隐式功能(UNIF),这是一种基于原始扫描和骨骼作为输入的人类重建和动画的零件方法。先前的基于部分的人类重建方法依赖于SMPL的地面零件标签,因此仅限于最小衣服的人类。相比之下,我们的方法学会了将部分与身体动作而不是部分监督分开,因此可以扩展到穿衣服的人类和其他铰接的物体。通过以骨头为中心的初始化,骨极限损失和正常损失,我们的分区转移是可以确保稳定零件分裂的截面,即使训练姿势有限。我们还提出了SDF的最小周边损失,以抑制额外的表面和部分重叠。我们方法的另一个核心是一种相邻的部分接缝算法,该算法会产生非刚性变形,以维持显着减轻基于部分伪像的部分之间的连接。在该算法下,我们进一步提出了“竞争部分”,该方法通过点对骨骼而不是绝对位置的相对位置定义了重量,从而避免了神经隐含功能的概括性问题,其含量为lbs(线性混合皮肤)。我们通过在CAPE和ClothSeq数据集上穿衣服的人体重建和动画来证明我们方法的有效性。
We propose united implicit functions (UNIF), a part-based method for clothed human reconstruction and animation with raw scans and skeletons as the input. Previous part-based methods for human reconstruction rely on ground-truth part labels from SMPL and thus are limited to minimal-clothed humans. In contrast, our method learns to separate parts from body motions instead of part supervision, thus can be extended to clothed humans and other articulated objects. Our Partition-from-Motion is achieved by a bone-centered initialization, a bone limit loss, and a section normal loss that ensure stable part division even when the training poses are limited. We also present a minimal perimeter loss for SDF to suppress extra surfaces and part overlapping. Another core of our method is an adjacent part seaming algorithm that produces non-rigid deformations to maintain the connection between parts which significantly relieves the part-based artifacts. Under this algorithm, we further propose "Competing Parts", a method that defines blending weights by the relative position of a point to bones instead of the absolute position, avoiding the generalization problem of neural implicit functions with inverse LBS (linear blend skinning). We demonstrate the effectiveness of our method by clothed human body reconstruction and animation on the CAPE and the ClothSeq datasets.