论文标题
地图集基准:人类运动预测的自动评估框架
The Atlas Benchmark: an Automated Evaluation Framework for Human Motion Prediction
论文作者
论文摘要
近年来,人类运动轨迹预测是许多领域自治系统的重要任务。通过不同社区提出的多种新方法,缺乏标准化的基准和客观比较正在越来越成为评估进度并指导进一步研究的主要局限性。现有基准的范围和灵活性有限,无法进行相关实验,并说明了代理和环境的上下文提示。在本文中,我们提出了地图集,这是一个系统地评估人类运动轨迹预测算法的基准。 Atlas提供数据预处理功能,超参数优化,具有流行的数据集,并且具有灵活性,可以进行设置和进行不充分的相关实验,以分析方法的准确性和鲁棒性。在ATLAS的示例应用中,我们比较了五个流行的模型和基于学习的预测指标,并发现,如果适当应用,基于物理的早期方法仍然具有极大的竞争力。这样的结果证实了Atlas等基准的必要性。
Human motion trajectory prediction, an essential task for autonomous systems in many domains, has been on the rise in recent years. With a multitude of new methods proposed by different communities, the lack of standardized benchmarks and objective comparisons is increasingly becoming a major limitation to assess progress and guide further research. Existing benchmarks are limited in their scope and flexibility to conduct relevant experiments and to account for contextual cues of agents and environments. In this paper we present Atlas, a benchmark to systematically evaluate human motion trajectory prediction algorithms in a unified framework. Atlas offers data preprocessing functions, hyperparameter optimization, comes with popular datasets and has the flexibility to setup and conduct underexplored yet relevant experiments to analyze a method's accuracy and robustness. In an example application of Atlas, we compare five popular model- and learning-based predictors and find that, when properly applied, early physics-based approaches are still remarkably competitive. Such results confirm the necessity of benchmarks like Atlas.