论文标题
跨域3D动作识别的协作域共享和特定目标特征聚类
Collaborating Domain-shared and Target-specific Feature Clustering for Cross-domain 3D Action Recognition
论文作者
论文摘要
在这项工作中,我们考虑了在开放式设置中跨域3D动作识别的问题,这是以前很少探索的。具体而言,有一个源域和一个目标域,其中包含具有不同样式和类别的骨架序列,我们的目的是通过使用标记的源数据和未标记的目标数据来聚集目标数据。对于这项具有挑战性的任务,本文提出了一种新颖的方法,称为Codt,以协作域共享特征和特定于目标的特征。 CODT由两个平行分支组成。一个分支机构旨在通过源域中的有监督学习来学习域共享的特征,而另一个分支是使用目标域中的对比度学习来学习特定于目标的特征。为了聚集功能,我们提出了一种在线聚类算法,该算法可以同时促进可靠的伪标签生成和特征群集。此外,为了利用域共享特征和特定目标特征的互补性,我们提出了一种新颖的协作聚类策略,以在两个分支之间实现配对关系一致性。我们对多个跨域3D动作识别数据集进行了广泛的实验,结果证明了我们方法的有效性。
In this work, we consider the problem of cross-domain 3D action recognition in the open-set setting, which has been rarely explored before. Specifically, there is a source domain and a target domain that contain the skeleton sequences with different styles and categories, and our purpose is to cluster the target data by utilizing the labeled source data and unlabeled target data. For such a challenging task, this paper presents a novel approach dubbed CoDT to collaboratively cluster the domain-shared features and target-specific features. CoDT consists of two parallel branches. One branch aims to learn domain-shared features with supervised learning in the source domain, while the other is to learn target-specific features using contrastive learning in the target domain. To cluster the features, we propose an online clustering algorithm that enables simultaneous promotion of robust pseudo label generation and feature clustering. Furthermore, to leverage the complementarity of domain-shared features and target-specific features, we propose a novel collaborative clustering strategy to enforce pair-wise relationship consistency between the two branches. We conduct extensive experiments on multiple cross-domain 3D action recognition datasets, and the results demonstrate the effectiveness of our method.