论文标题
CrossHuman:从人类重建的多帧图像中学习交叉构造
CrossHuman: Learning Cross-Guidance from Multi-Frame Images for Human Reconstruction
论文作者
论文摘要
我们提出了CrossHuman,这是一种新颖的方法,该方法从参数人类模型和多帧RGB图像中学习了交叉指导,以实现高质量的3D人类重建。为了恢复几何细节和纹理,即使在无形区域中,我们设计了一个重建管道,结合了基于跟踪的方法和无跟踪方法。给定一个单眼RGB序列,我们在整个序列中跟踪参数人模型,与目标框架相对应的点(体素)被参数体运动扭曲为参考框架。在参数体的几何学先验和RGB序列的空间对齐特征的指导下,融合了坚固的隐式表面。此外,将多帧变压器(MFT)和一个自我监管的经线细化模块集成到框架中,以放宽参数主体的要求并帮助处理非常松散的布。与以前的作品相比,我们的十字人类可以在可见的和无形区域启用高保真的几何细节和纹理,并提高了人类重建的准确性,即使在估计的不准确的参数人类模型下也是如此。实验表明我们的方法实现了最新的(SOTA)性能。
We propose CrossHuman, a novel method that learns cross-guidance from parametric human model and multi-frame RGB images to achieve high-quality 3D human reconstruction. To recover geometry details and texture even in invisible regions, we design a reconstruction pipeline combined with tracking-based methods and tracking-free methods. Given a monocular RGB sequence, we track the parametric human model in the whole sequence, the points (voxels) corresponding to the target frame are warped to reference frames by the parametric body motion. Guided by the geometry priors of the parametric body and spatially aligned features from RGB sequence, the robust implicit surface is fused. Moreover, a multi-frame transformer (MFT) and a self-supervised warp refinement module are integrated to the framework to relax the requirements of parametric body and help to deal with very loose cloth. Compared with previous works, our CrossHuman enables high-fidelity geometry details and texture in both visible and invisible regions and improves the accuracy of the human reconstruction even under estimated inaccurate parametric human models. The experiments demonstrate that our method achieves state-of-the-art (SOTA) performance.