论文标题
随机介质中的波:端点strichartz估计和数量估计值
Waves in a random medium: Endpoint Strichartz estimates and number estimates
论文作者
论文摘要
在本文中,我们重新考虑了动力学状态中随机介质中波传播的问题。该计划的最终目的是了解条件,这些条件允许得出动力学或辐射转移方程。尽管目前尚未达到它,但是在Fock空间设置中的准确且令人惊讶的数字估计值(恰好是由宏观时间尺度上的动力学传播)。 Keel和Tao Endpoint Strichartz估计在与Cauchy-Kowalevski型参数结合后起着至关重要的作用。尽管整个文章都集中在高斯随机潜力中的schr {Ö} dinger波的最简单情况下,将其转换为QFT问题很简单,但为了将几个中间结果写成一般环境,以便将其应用于其他类似的问题。
In this article we reconsider the problem of the propagation of waves in a random medium in a kinetic regime. The final aim of this program would be the understanding of the conditions which allow to derive a kinetic or radiative transfer equation. Although it is not reached for the moment, accurate and somehow surprising number estimates in the Fock space setting, which happen to be propagated by the dynamics on macroscopic time scales, are obtained. Keel and Tao endpoint Strichartz estimates play a crucial role after being combined with a Cauchy-Kowalevski type argument. Although the whole article is focussed on the simplest case of Schr{ö}dinger waves in a gaussian random potential of which the translation into a QFT problem is straightforward, several intermediate results are written in a general setting in order to be applied to other similar problems.