论文标题
曲线上零维的引号方案的派生类别
Derived categories of Quot schemes of zero-dimensional quotients on curves
论文作者
论文摘要
我们证明,根据曲线的对称产物的派生类别,在曲线上的引号类别的衍生类别的派生类别的半双相分解存在。以上结果是Bagnarol-Fantechi-Perroni在Grothendieck品种中的类似公式的类似公式的类似类似物。这是相对维度的更一般的引号公式的特殊情况,该公式被认为是江安(Jiang)猜想并由作者证明的引号公式的效率。该证明涉及一个框架Quiver的分类墙面式公式,该公式本身是动机的,并且在Donaldson-Thomas不变的分类墙壁交叉公式中应用。
We prove the existence of semiorthogonal decompositions of derived categories of Quot schemes of zero-dimensional quotients on curves in terms of derived categories of symmetric products of curves. The above result is a categorical analogue of a similar formula for the class of Quot schemes in the Grothendieck ring of varieties by Bagnarol-Fantechi-Perroni. It is a special case of a more general Quot formula of relative dimension one, which is regarded as a Bosonic counterpart of the Quot formula conjectured by Jiang and proved by the author. The proof involves categorical wall-crossing formula for framed one loop quiver, which itself is motivated and has applications to categorical wall-crossing formula of Donaldson-Thomas invariants.