论文标题
HyperNET:自我监视的高光谱空间光谱特征特征理解网络,用于高光谱变化检测
HyperNet: Self-Supervised Hyperspectral Spatial-Spectral Feature Understanding Network for Hyperspectral Change Detection
论文作者
论文摘要
自我监督学习的快速发展降低了从大量未标记的数据中的条形学习特征表示,并触发了一系列有关遥感图像的变更检测的研究。从自然图像分类到遥感图像的自我监督学习的挑战是由两个任务之间的差异引起的。对于像素级精确的更改检测,学习的补丁级特征表示不满意。在本文中,我们提出了一种新颖的像素级自我观察的高光谱空间谱了解网络(HyperNET),以完成像素的特征表示,以有效地进行高光谱变化检测。具体而言,不是斑块,而是整个图像被馈入网络,并且通过像素比较多个颞空间光谱特征。提出了强大的空间光谱注意模块,而不是处理二维成像空间和光谱响应维度,而是提出了一个强大的空间光谱注意模块,以分别探索多个颞高光谱图像(HSIS)的空间相关性和歧视性光谱特征。仅创建并被迫对齐双向HSI的同一位置的阳性样品,旨在学习光谱差异不变的特征。此外,提出了一种新的相似性损失函数,以解决不平衡的易于且坚硬的阳性样品比较的问题,其中这些硬样品的权重扩大并突出显示以促进网络训练。已经采用了六个高光谱数据集来测试所提出的HyperNET的有效性和概括。广泛的实验表明,在下游高光谱变化检测任务上,超核比最先进的算法具有优势。
The fast development of self-supervised learning lowers the bar learning feature representation from massive unlabeled data and has triggered a series of research on change detection of remote sensing images. Challenges in adapting self-supervised learning from natural images classification to remote sensing images change detection arise from difference between the two tasks. The learned patch-level feature representations are not satisfying for the pixel-level precise change detection. In this paper, we proposed a novel pixel-level self-supervised hyperspectral spatial-spectral understanding network (HyperNet) to accomplish pixel-wise feature representation for effective hyperspectral change detection. Concretely, not patches but the whole images are fed into the network and the multi-temporal spatial-spectral features are compared pixel by pixel. Instead of processing the two-dimensional imaging space and spectral response dimension in hybrid style, a powerful spatial-spectral attention module is put forward to explore the spatial correlation and discriminative spectral features of multi-temporal hyperspectral images (HSIs), separately. Only the positive samples at the same location of bi-temporal HSIs are created and forced to be aligned, aiming at learning the spectral difference-invariant features. Moreover, a new similarity loss function named focal cosine is proposed to solve the problem of imbalanced easy and hard positive samples comparison, where the weights of those hard samples are enlarged and highlighted to promote the network training. Six hyperspectral datasets have been adopted to test the validity and generalization of proposed HyperNet. The extensive experiments demonstrate the superiority of HyperNet over the state-of-the-art algorithms on downstream hyperspectral change detection tasks.