论文标题
利用域可转移性用于协作层间域自适应对象检测
Exploiting Domain Transferability for Collaborative Inter-level Domain Adaptive Object Detection
论文作者
论文摘要
对象检测的域适应性(DAOD)最近由于其检测目标对象而没有任何注释而引起了很多关注。为了解决这个问题,以前的作品着重于通过对抗训练在两个阶段检测器中从部分级别(例如图像级,实例级,RPN级)提取的对齐功能。但是,对象检测管道中的个体级别彼此紧密相关,并且尚未考虑此层次之间的关系。为此,我们为DAOD介绍了一个具有三个提出的组件的新型框架:多尺度感知不确定性注意力(MUA),可转移的区域建议网络(TRPN)和动态实例采样(DIS)。使用这些模块,我们试图在训练过程中减少负转移效应,同时最大程度地传递性能以及两个领域的可区分性。最后,我们的框架隐含地学习了域不变区域,以通过利用可转移信息并通过协作利用其域信息来增强不同检测级别之间的互补性,从而以对象检测为目标检测。通过消融研究和实验,我们表明所提出的模块以协同方式有助于性能提高,以证明我们方法的有效性。此外,我们的模型在各种基准测试方面取得了新的最新性能。
Domain adaptation for object detection (DAOD) has recently drawn much attention owing to its capability of detecting target objects without any annotations. To tackle the problem, previous works focus on aligning features extracted from partial levels (e.g., image-level, instance-level, RPN-level) in a two-stage detector via adversarial training. However, individual levels in the object detection pipeline are closely related to each other and this inter-level relation is unconsidered yet. To this end, we introduce a novel framework for DAOD with three proposed components: Multi-scale-aware Uncertainty Attention (MUA), Transferable Region Proposal Network (TRPN), and Dynamic Instance Sampling (DIS). With these modules, we seek to reduce the negative transfer effect during training while maximizing transferability as well as discriminability in both domains. Finally, our framework implicitly learns domain invariant regions for object detection via exploiting the transferable information and enhances the complementarity between different detection levels by collaboratively utilizing their domain information. Through ablation studies and experiments, we show that the proposed modules contribute to the performance improvement in a synergic way, demonstrating the effectiveness of our method. Moreover, our model achieves a new state-of-the-art performance on various benchmarks.