论文标题
在室温下观察高质量石墨烯设备中定义明确的Kohn-Anomaly
Observation of well-defined Kohn-anomaly in high-quality graphene devices at room temperature
论文作者
论文摘要
由于其超薄的性质,石墨烯量子光电学(如栅极依赖的石墨烯拉曼特性)的研究被与底物和周围环境的相互作用所掩盖。例如,使用掺杂的氧化氧化物层的掺杂硅的使用将观察结果限制为与明确定义的科恩 - 异常行为的低温,这与绝热的Born-Oppenheimer近似有关。在这里,我们设计了一个光电设备,该设备由单层石墨烯与薄石墨铅电接触,坐在原子固定的六角形硝酸硼(HBN)底物上,并用超薄金(AU)层盖住。我们表明,该设备在光学上是透明的,没有设备组件的背景光峰和光致发光,也没有激光诱导的静电掺杂(光播)的产生。这样可以产生室温栅极依赖的拉曼光谱效应,这些效应仅在迄今为止的低温温度下观察到,尤其是所有kohn- anomaly phon子的能量归一化。通过将石墨烯光电特性与底物效应解耦,可以在室温下观察量子现象。
Due to its ultra-thin nature, the study of graphene quantum optoelectronics, like gate-dependent graphene Raman properties, is obscured by interactions with substrates and surroundings. For instance, the use of doped silicon with a capping thermal oxide layer limited the observation to low temperatures of a well-defined Kohn-anomaly behavior, related to the breakdown of the adiabatic Born-Oppenheimer approximation. Here, we design an optoelectronic device consisting of single-layer graphene electrically contacted with thin graphite leads, seated on an atomically flat hexagonal boron nitride (hBN) substrate and gated with an ultra-thin gold (Au) layer. We show that this device is optically transparent, has no background optical peaks and photoluminescence from the device components, and no generation of laser-induced electrostatic doping (photodoping). This allows for room-temperature gate-dependent Raman spectroscopy effects that have only been observed at cryogenic temperatures so far, above all the Kohn-anomaly phonon energy normalization. The new device architecture by decoupling graphene optoelectronic properties from the substrate effects, allows for the observation of quantum phenomena at room temperature.