论文标题
FAD和AD接口的Blume-Emery-Griffiths模型
The Blume-Emery-Griffiths model at the FAD and AD interfaces
论文作者
论文摘要
我们在铁磁性抗逆转录液(FAD)和Antiquadrupolar-Disordered(AD)参数接口上分析了晶格$ \ zd $上的Blume-Emery-Griffiths(BEG)模型。在对FAD界面的分析中,我们在零温度下引入了基态的Gibbs采样器,并以两种不同的方式进行利用:首先,我们通过在零温度下对自发磁化的经验评估进行完美的经验评估,在$ d = 3 $中找到非零值,并在$ d = 3 $中找到$ d = 2 $ d = 2 $。其次,在$ d = 2 $中使用仔细的耦合,我们严格地证明施加$+$边界条件,方形盒中心的磁化趋于热力学极限和两点相关性衰减。同样,再次使用一个耦合参数,我们表明存在零温度beg的无限体积吉布斯量度,它是独一无二的。在对广告接口的分析中,我们将自己限制在$ d = 2 $中,并且通过将BEG模型与Bernoulli站点的渗透进行比较,以$ \ Mathbb {Z}^2 $的匹配图中的匹配图,我们将获得无限量限制限制的消失的条件,以改善低温,通过扩张技术获得了早期的结果。
We analyse the Blume-Emery-Griffiths (BEG) model on the lattice $\Zd$ at the ferromagnetic-antiquadrupolar-disordered (FAD) and antiquadrupolar-disordered (AD) interfaces of parameters. In our analysis of the FAD interface we introduce a Gibbs sampler of the ground states at zero temperature, and we exploit it in two different ways: first, we perform via perfect sampling an empirical evaluation of the spontaneous magnetization at zero temperature, finding a non-zero value in $d=3$ and a vanishing value in $d=2$. Second, using a careful coupling with the Bernoulli site percolation model in $d=2$, we prove rigorously that imposing $+$ boundary conditions, the magnetization in the center of a square box tends to zero in the thermodynamical limit and the two-point correlations decay exponentially. Also, using again a coupling argument, we show that the infinite volume Gibbs measure of the zero-temperature BEG exists and it is unique. In our analysis of the AD interface we restrict ourselves to $d=2$ and, by comparing the BEG model with a Bernoulli site percolation in a matching graph of $\mathbb{Z}^2$, we get a condition for the vanishing of the infinite volume limit magnetization improving, for low temperatures, earlier results obtained via expansion techniques.