论文标题

用于从线性阵列,主动源波场测量的近地面2D与图像开发近地面2D的频率CNN

A Frequency-Velocity CNN for Developing Near-Surface 2D Vs Images from Linear-Array, Active-Source Wavefield Measurements

论文作者

Abbas, Aser, Vantassel, Joseph P., Cox, Brady R., Kumar, Krishna, Crocker, Jodie

论文摘要

本文提出了频率卷积神经网络(CNN),用于快速,非侵入性的2D剪切波速度(VS)成像,对近地面地质物质的成像。在频速度域中运行,可以在用于生成CNN输入的线性阵列,主动源实验测试配置中具有显着的灵活性,这些配置是归一化的分散图像。与波场图像不同,标准化的分散图像对实验测试配置相对不敏感,可容纳各种源类型,源偏移,接收器数量和接收器间距。我们通过将其应用于经典的近表面地球物理学问题,即成像两层,起伏的土壤 - 贝匹纤维界面,来证明频率CNN的有效性。最近,通过开发一个时间距离CNN来研究这个问题,该问题表现出了很大的希望,但缺乏使用不同的现场测试配置的灵活性。在此,新的频道CNN显示出与时距CNN的精度可比性,同时提供了更大的灵活性来处理各种现场应用程序。使用100,000个合成近表面模型对频率速度CNN进行了训练,验证和测试。首先,使用训练集的合成近表面模型对所提出的频率CNN推广到各种采集配置的能力首先测试,然后应用于美国德克萨斯州奥斯汀市的Hornsby Bend站点收集的实验场数据。当针对更广泛的地质条件范围充分开发时,提出的CNN最终可以用作当前pseudo-2D表面波成像技术的快速,端到端替代方案,或为完整波形反演开发启动模型。

This paper presents a frequency-velocity convolutional neural network (CNN) for rapid, non-invasive 2D shear wave velocity (Vs) imaging of near-surface geo-materials. Operating in the frequency-velocity domain allows for significant flexibility in the linear-array, active-source experimental testing configurations used for generating the CNN input, which are normalized dispersion images. Unlike wavefield images, normalized dispersion images are relatively insensitive to the experimental testing configuration, accommodating various source types, source offsets, numbers of receivers, and receiver spacings. We demonstrate the effectiveness of the frequency-velocity CNN by applying it to a classic near-surface geophysics problem, namely, imaging a two-layer, undulating, soil-over-bedrock interface. This problem was recently investigated in our group by developing a time-distance CNN, which showed great promise but lacked flexibility in utilizing different field-testing configurations. Herein, the new frequency-velocity CNN is shown to have comparable accuracy to the time-distance CNN while providing greater flexibility to handle varied field applications. The frequency-velocity CNN was trained, validated, and tested using 100,000 synthetic near-surface models. The ability of the proposed frequency-velocity CNN to generalize across various acquisition configurations is first tested using synthetic near-surface models with different acquisition configurations from that of the training set, and then applied to experimental field data collected at the Hornsby Bend site in Austin, Texas, USA. When fully developed for a wider range of geological conditions, the proposed CNN may ultimately be used as a rapid, end-to-end alternative for current pseudo-2D surface wave imaging techniques or to develop starting models for full waveform inversion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源