论文标题
5D和4D Einstein-Gauss-Bonnet重力中的宇宙学
Cosmology in 5D and 4D Einstein-Gauss-Bonnet gravity
论文作者
论文摘要
我们考虑五维的爱因斯坦 - 加斯 - 尼斯河内重力,可以通过在五维的兰氏兰斯佐斯 - 洛沃克重力理论中选择coeficigents获得。发现了Friedmann-Lema-Robertson-Walker指标的Einstein-Gauss-Bonnet场方程以及其某些解决方案。使用randall-sundrum紧凑型程序从高斯 - 骨网重度获得了四维重力作用,然后研究了紧凑程序在宇宙学溶液中的含义。使用相同的程序来从五维广告 - 切尔尼 - 锡的重力中获得四个维度的重力,然后研究一些宇宙学解决方案。使用相同的程序从五维广告 - 切尔尼·塞米对重力中获得4D的重力,然后研究一些宇宙学解决方案。在附录中考虑了四维动作重力的构建的某些方面。
We consider the five-dimensional Einstein-Gauss-Bonnet gravity, which can be obtained by means of an apropriate choice of coeficients in the five-dimensional Lanczos-Lovelock gravity theory. The Einstein-Gauss-Bonnet field equations for the Friedmann-Lemaître-Robertson-Walker metric are found as well as some of their solutions. A four-dimensional gravity action is obtained from the Gauss-Bonnet gravity using the Randall-Sundrum compactification procedure and then it is studied the implications of the compactification procedure in the cosmological solutions. The same procedure is used to obtain gravity in four dimensions from the five-dimensional AdS-Chern-Simons gravity to then study some cosmological solutions. The same procedure is used to obtain gravity in 4D from the five-dimensional AdS-Chern-Simons gravity to then study some cosmological solutions. Some aspects of the construction of the four-dimensional action gravity are considered in an Appendix.