论文标题

潘多拉盒子问题非渗透检查:硬度和近似方案

Pandora Box Problem with Nonobligatory Inspection: Hardness and Approximation Scheme

论文作者

Fu, Hu, Li, Jiawei, Liu, Daogao

论文摘要

Weitzman(1979)引入了Pandora Box问题,作为进行顺序搜索的模型,并提供了一项优雅的基于指数的政策,该政策可证明是最佳的预期收益。在各种情况下,搜索代理可以在不进行昂贵检查的情况下选择一个选项。潘多拉盒子问题的变体与非掩饰检查有关,引起了经济学和算法研究人员的兴趣。各种简单的算法已证明是次优的,其最著名的0.8-鉴定算法是Guha等。 (2008)。该问题尚无硬度结果。 在这项工作中,我们表明,计算潘多拉(Pandora)问题的最佳策略是NP-HARD。我们还提供了一个多项式时间近似方案(PTA),该方案计算具有预期收益至少$(1-ε)$的策略的最佳分数,用于任意的小$ε> 0 $。在侧面,我们显示了要在NP中的问题的决策版本。

Weitzman (1979) introduced the Pandora Box problem as a model for sequential search with inspection costs, and gave an elegant index-based policy that attains provably optimal expected payoff. In various scenarios, the searching agent may select an option without making a costly inspection. The variant of the Pandora box problem with non-obligatory inspection has attracted interest from both economics and algorithms researchers. Various simple algorithms have proved suboptimal, with the best known 0.8-approximation algorithm due to Guha et al. (2008). No hardness result for the problem was known. In this work, we show that it is NP-hard to compute an optimal policy for Pandora's problem with nonobligatory inspection. We also give a polynomial-time approximation scheme (PTAS) that computes policies with an expected payoff at least $(1 - ε)$-fraction of the optimal, for arbitrarily small $ε> 0$. On the side, we show the decision version of the problem to be in NP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源