论文标题

COVID-19从呼吸器中检测具有分层光谱变压器的呼吸声

COVID-19 Detection from Respiratory Sounds with Hierarchical Spectrogram Transformers

论文作者

Aytekin, Idil, Dalmaz, Onat, Gonc, Kaan, Ankishan, Haydar, Saritas, Emine U, Bagci, Ulas, Celik, Haydar, Cukur, Tolga

论文摘要

监测普遍的空气传播疾病(例如COVID-19)的特征涉及呼吸评估。虽然听诊是对疾病症状进行初步筛查的主流方法,但由于需要专门的医院就诊的需要,其效用受到了阻碍。基于便携式设备上呼吸道声音的记录的远程监测是一种有希望的替代方法,它可以帮助早期评估Covid-19,主要影响下呼吸道。在这项研究中,我们介绍了一种新型的深度学习方法,可以将Covid-19患者与健康对照组区分开,鉴于咳嗽或呼吸声的音频记录。所提出的方法利用新型的层次谱图变压器(HST)在呼吸声的光谱图表示上。 HST在频谱图中体现了在本地窗口上的自我发挥机制,并且窗口大小逐渐在模型阶段增长,以捕获本地环境。将HST与最先进的常规和深度学习基线进行比较。在众包跨国数据集上进行的演示表明,HST的表现优于竞争方法,在检测COVID-19案例中,在接收器操作特征曲线(AUC)下实现了超过83%的面积。

Monitoring of prevalent airborne diseases such as COVID-19 characteristically involves respiratory assessments. While auscultation is a mainstream method for preliminary screening of disease symptoms, its utility is hampered by the need for dedicated hospital visits. Remote monitoring based on recordings of respiratory sounds on portable devices is a promising alternative, which can assist in early assessment of COVID-19 that primarily affects the lower respiratory tract. In this study, we introduce a novel deep learning approach to distinguish patients with COVID-19 from healthy controls given audio recordings of cough or breathing sounds. The proposed approach leverages a novel hierarchical spectrogram transformer (HST) on spectrogram representations of respiratory sounds. HST embodies self-attention mechanisms over local windows in spectrograms, and window size is progressively grown over model stages to capture local to global context. HST is compared against state-of-the-art conventional and deep-learning baselines. Demonstrations on crowd-sourced multi-national datasets indicate that HST outperforms competing methods, achieving over 83% area under the receiver operating characteristic curve (AUC) in detecting COVID-19 cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源