论文标题
部分可观测时空混沌系统的无模型预测
The Dice loss in the context of missing or empty labels: Introducing $Φ$ and $ε$
论文作者
论文摘要
尽管骰子损失是医学图像分割中的主要损失函数之一,但大多数研究都忽略了其派生型的衍生物,即使用梯度下降时优化的真实电动机。在本文中,我们强调了在缺少或空的标签存在下骰子丢失的特殊作用。首先,我们制定了理论基础,该基础对骰子损失及其导数进行了一般描述。事实证明,减少尺寸$φ$和平滑项$ε$的选择是非平凡的,并且极大地影响了其行为。我们找到并提出了$φ$和$ε$的启发式组合,它们在分段设置中起作用,带有缺失或空标签。其次,我们使用两个公开可用的数据集在二进制和多类分段设置中验证这些发现。我们确认,$φ$和$ε$的选择确实是关键的。选择了$φ$,因此减少的削减是在单个批次(和类)元素上进行的,并且$ε$可忽略不计,骰子损失自然而然地与缺失的标签交往,并且与最近缺少标签的最新适应性相比,执行效果相似。选择$φ$,以便减少在多个批处理元素上或以$ε$的启发式值进行,骰子损失可以正确处理空标签。我们认为,这项工作强调了一些基本观点,并希望它鼓励研究人员更好地描述他们对未来工作中骰子损失的确切实施。
Albeit the Dice loss is one of the dominant loss functions in medical image segmentation, most research omits a closer look at its derivative, i.e. the real motor of the optimization when using gradient descent. In this paper, we highlight the peculiar action of the Dice loss in the presence of missing or empty labels. First, we formulate a theoretical basis that gives a general description of the Dice loss and its derivative. It turns out that the choice of the reduction dimensions $Φ$ and the smoothing term $ε$ is non-trivial and greatly influences its behavior. We find and propose heuristic combinations of $Φ$ and $ε$ that work in a segmentation setting with either missing or empty labels. Second, we empirically validate these findings in a binary and multiclass segmentation setting using two publicly available datasets. We confirm that the choice of $Φ$ and $ε$ is indeed pivotal. With $Φ$ chosen such that the reductions happen over a single batch (and class) element and with a negligible $ε$, the Dice loss deals with missing labels naturally and performs similarly compared to recent adaptations specific for missing labels. With $Φ$ chosen such that the reductions happen over multiple batch elements or with a heuristic value for $ε$, the Dice loss handles empty labels correctly. We believe that this work highlights some essential perspectives and hope that it encourages researchers to better describe their exact implementation of the Dice loss in future work.