论文标题

部分可观测时空混沌系统的无模型预测

Chance-Constrained AC Optimal Power Flow for Unbalanced Distribution Grids

论文作者

Girigoudar, Kshitij, Hou, Ashley M., Roald, Line A.

论文摘要

分布式能源资源(DER)的渗透不断增长,导致不断变化的操作条件,需要通过分销网格运营商有效地管理。太阳能光伏(PV)系统以及负载预测错误的间歇性质不仅会增加网格的不确定性,而且还带来了巨大的功率质量挑战,例如电压不平衡和电压大小违规。本文利用偶然受限的优化方法来减少不确定性对分配网格操作的影响。我们首先提出了分配网格的机会约束的最佳功率流(CC-OPF)问题,并讨论了基于约束拧紧的重新制定,该重新制定不需要对三相交流电源流动方程的任何近似或放松。然后,我们提出了两种能够有效解决重新制定的迭代溶液算法。在案例研究中,通过使用Real PV和负载测量数据对IEEE 13-BUS测试馈线进行模拟来分析两种算法的性能。仿真结果表明,两种方法都能够在样本外评估中执行机会限制。

The growing penetration of distributed energy resources (DERs) is leading to continually changing operating conditions, which need to be managed efficiently by distribution grid operators. The intermittent nature of DERs such as solar photovoltaic (PV) systems as well as load forecasting errors not only increase uncertainty in the grid, but also pose significant power quality challenges such as voltage unbalance and voltage magnitude violations. This paper leverages a chance-constrained optimization approach to reduce the impact of uncertainty on distribution grid operation. We first present the chance-constrained optimal power flow (CC-OPF) problem for distribution grids and discuss a reformulation based on constraint tightening that does not require any approximations or relaxations of the three-phase AC power flow equations. We then propose two iterative solution algorithms capable of efficiently solving the reformulation. In the case studies, the performance of both algorithms is analyzed by running simulations on the IEEE 13-bus test feeder using real PV and load measurement data. The simulation results indicate that both methods are able to enforce the chance constraints in in- and out-of-sample evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源