论文标题
$ c $ - 符合跨维度的流量
$c$-Functions in Flows Across Dimensions
论文作者
论文摘要
我们探讨了在不同时空维度中理论之间的重新归一化群体流动中$ c $构件的概念。我们讨论了一方面连接紫外线和IR固定点理论中心电荷的功能,另一方面是单调的函数。首先,我们使用跨尺寸的全息双RG流动的几何特性和无效能量条件的约束,我们构建了一个单调全息$ c $函数,从而在跨维度上建立了全息$ c $ c $ theorem。其次,我们将纠缠熵用于沿RG流跨维度的田间理论中的两种不同类型的纠缠区域,以构建候选$ c $ functions,这些函数满足了这两个标准之一,但并非两者都满足。在适当的过程中,我们还讨论了对纠缠熵的角贡献与紧凑型内部空间的拓扑之间的有趣联系。作为两种方法的具体示例,我们全息研究了4D $ \ MATHCAL N = 4 $ SEMM的扭曲压缩和6D $ \ Mathcal n =(2,0)$理论的压缩。
We explore the notion of $c$-functions in renormalization group flows between theories in different spacetime dimensions. We discuss functions connecting central charges of the UV and IR fixed point theories on the one hand, and functions which are monotonic along the flow on the other. First, using the geometric properties of the holographic dual RG flows across dimensions and the constraints from the null energy condition, we construct a monotonic holographic $c$-function and thereby establish a holographic $c$-theorem across dimensions. Second, we use entanglement entropies for two different types of entangling regions in a field theory along the RG flow across dimensions to construct candidate $c$-functions which satisfy one of the two criteria but not both. In due process we also discuss an interesting connection between corner contributions to the entanglement entropy and the topology of the compact internal space. As concrete examples for both approaches, we holographically study twisted compactifications of 4d $\mathcal N=4$ SYM and compactifications of 6d $\mathcal N=(2,0)$ theories.