论文标题
在流媒体和动态匹配方面的规律引理和障碍
On Regularity Lemma and Barriers in Streaming and Dynamic Matching
论文作者
论文摘要
我们提出了一种新的方法,可以通过建立Szemerédi著名的规律性引理来查找密集图。这使我们能够获得非平凡的,尽管与长期界限相比,在流和动态图中进行了略微改进。特别是,我们为$ n $ vertex图建立以下结果: *一种确定性的单通行流算法 $(1-o(1))$ - $ O(n^2)$位的近似匹配空间。这构成了sublinear空间中此问题的第一个单通算法,该算法在$ \ frac {1} {2} $ - 贪婪算法的近似值上进行了改进。 *一种随机的完全动态算法,具有较高概率的$(1-O(1))$ - 在$ O(o(n)$最糟糕的更新时间中,每个边缘插入或删除时间均为$ O(n)$最差的更新时间。该算法甚至与自适应对手有关。这是第一个$ o(n)$更新时间动态算法,并任意接近一个近似保证。 鉴于使用规律性引理,我们的算法对微不足道的界定获得的改进仅由一些$(\ log^*{n})^{θ(1)} $ factor。然而,在每种情况下,它们都表明``右''对问题的答案不是先前的范围所决定的。 最后,在流媒体模型中,我们还提出了一个随机的$(1-O(1))$ - 近似算法,其空间可以通过某些Ruzsa-Szemerédi(RS)图的密度上限。尽管现在已经广泛使用了RS图来证明流式下限,但我们的是第一个将其用作设计改进的流媒体算法的上限工具。
We present a new approach for finding matchings in dense graphs by building on Szemerédi's celebrated Regularity Lemma. This allows us to obtain non-trivial albeit slight improvements over longstanding bounds for matchings in streaming and dynamic graphs. In particular, we establish the following results for $n$-vertex graphs: * A deterministic single-pass streaming algorithm that finds a $(1-o(1))$-approximate matching in $o(n^2)$ bits of space. This constitutes the first single-pass algorithm for this problem in sublinear space that improves over the $\frac{1}{2}$-approximation of the greedy algorithm. * A randomized fully dynamic algorithm that with high probability maintains a $(1-o(1))$-approximate matching in $o(n)$ worst-case update time per each edge insertion or deletion. The algorithm works even against an adaptive adversary. This is the first $o(n)$ update-time dynamic algorithm with approximation guarantee arbitrarily close to one. Given the use of regularity lemma, the improvement obtained by our algorithms over trivial bounds is only by some $(\log^*{n})^{Θ(1)}$ factor. Nevertheless, in each case, they show that the ``right'' answer to the problem is not what is dictated by the previous bounds. Finally, in the streaming model, we also present a randomized $(1-o(1))$-approximation algorithm whose space can be upper bounded by the density of certain Ruzsa-Szemerédi (RS) graphs. While RS graphs by now have been used extensively to prove streaming lower bounds, ours is the first to use them as an upper bound tool for designing improved streaming algorithms.