论文标题
重新考虑基于单阶段3D对象检测的优化
Rethinking IoU-based Optimization for Single-stage 3D Object Detection
论文作者
论文摘要
由于基于相交的联合会(IOU)优化保持了最终IOU预测度量和损失的一致性,因此它已被广泛用于单阶段2D对象检测器的回归和分类分支。最近,几种3D对象检测方法采用了基于IOU的优化,并用3D IOU直接替换2D iou。但是,由于复杂的实施和效率低下的向后操作,3D中的这种直接计算非常昂贵。此外,基于3D IOU的优化是优化的,因为它对旋转很敏感,因此可能导致训练不稳定性和检测性能恶化。在本文中,我们提出了一种新型的旋转旋转iou(RDIOU)方法,该方法可以减轻旋转敏感性问题,并在训练阶段与3D IOU相比产生更有效的优化目标。具体而言,我们的RDIOU通过将旋转变量解耦作为独立术语,但保留3D iou的几何形状来简化回归参数的复杂相互作用。通过将RDIOU纳入回归和分类分支,鼓励网络学习更精确的边界框,并同时克服分类和回归之间的未对准问题。基准Kitti和Waymo开放数据集的广泛实验验证了我们的RDIOU方法可以为单阶段3D对象检测带来实质性改进。
Since Intersection-over-Union (IoU) based optimization maintains the consistency of the final IoU prediction metric and losses, it has been widely used in both regression and classification branches of single-stage 2D object detectors. Recently, several 3D object detection methods adopt IoU-based optimization and directly replace the 2D IoU with 3D IoU. However, such a direct computation in 3D is very costly due to the complex implementation and inefficient backward operations. Moreover, 3D IoU-based optimization is sub-optimal as it is sensitive to rotation and thus can cause training instability and detection performance deterioration. In this paper, we propose a novel Rotation-Decoupled IoU (RDIoU) method that can mitigate the rotation-sensitivity issue, and produce more efficient optimization objectives compared with 3D IoU during the training stage. Specifically, our RDIoU simplifies the complex interactions of regression parameters by decoupling the rotation variable as an independent term, yet preserving the geometry of 3D IoU. By incorporating RDIoU into both the regression and classification branches, the network is encouraged to learn more precise bounding boxes and concurrently overcome the misalignment issue between classification and regression. Extensive experiments on the benchmark KITTI and Waymo Open Dataset validate that our RDIoU method can bring substantial improvement for the single-stage 3D object detection.