论文标题

通过因子分析潜在空间的多模式分层自动编码器

Multimodal hierarchical Variational AutoEncoders with Factor Analysis latent space

论文作者

Guerrero-López, Alejandro, Sevilla-Salcedo, Carlos, Gómez-Verdejo, Vanessa, Olmos, Pablo M.

论文摘要

目的:处理异质和混合数据类型已变得越来越关键,而实际数据库中的指数增长。虽然深层生成模型试图将各种数据视图合并到一个共同的潜在空间中,但它们通常会牺牲可解释性,灵活性和模块化。这项研究提出了一种新的方法来解决这些局限性,通过将变异自动编码器(VAE)与潜在空间(FA-VAE)相结合(VAE)。 方法:所提出的FA-VAE方法采用多个VAE来学习连续的潜在空间中每个异构数据视图的私人表示。使用线性投影矩阵生成的低维潜在空间之间共享视图之间的信息。这种模块化设计在私有和共享的潜在空间之间创造了层次依赖性,从而可以灵活地添加新的视图和预训练模型的条件。 结果:FA-VAE方法促进了来自不同领域的数据的交叉生成,并可以在生成模型之间进行转移学习。这可以有效地整合各种数据视图的信息,同时保留其独特的特征。 结论:通过克服现有方法的局限性,FA-VAE提供了一种更容易解释,灵活和模块化的解决方案,用于管理异质数据类型。它为更有效,更可扩展的数据处理策略提供了途径,从而增强了跨域数据合成和模型可传递性的潜力。

Purpose: Handling heterogeneous and mixed data types has become increasingly critical with the exponential growth in real-world databases. While deep generative models attempt to merge diverse data views into a common latent space, they often sacrifice interpretability, flexibility, and modularity. This study proposes a novel method to address these limitations by combining Variational AutoEncoders (VAEs) with a Factor Analysis latent space (FA-VAE). Methods: The proposed FA-VAE method employs multiple VAEs to learn a private representation for each heterogeneous data view in a continuous latent space. Information is shared between views using a low-dimensional latent space, generated via a linear projection matrix. This modular design creates a hierarchical dependency between private and shared latent spaces, allowing for the flexible addition of new views and conditioning of pre-trained models. Results: The FA-VAE approach facilitates cross-generation of data from different domains and enables transfer learning between generative models. This allows for effective integration of information across diverse data views while preserving their distinct characteristics. Conclusions: By overcoming the limitations of existing methods, the FA-VAE provides a more interpretable, flexible, and modular solution for managing heterogeneous data types. It offers a pathway to more efficient and scalable data-handling strategies, enhancing the potential for cross-domain data synthesis and model transferability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源