论文标题
单阶段通过可变形的注意力流动流动
Single Stage Virtual Try-on via Deformable Attention Flows
论文作者
论文摘要
虚拟试验旨在在店内服装和参考人员形象的情况下产生光真实的拟合结果。现有方法通常建立多阶段框架,以分别处理衣服翘曲和身体混合,或严重依赖基于中间解析器的标签,这些标签可能嘈杂甚至不准确。为了解决上述挑战,我们通过开发一种新型的变形注意流(DAFLOF)提出一个单阶段的尝试框架,该框架将可变形的注意方案应用于多流量估计。仅将姿势关键点作为指导,分别为参考人员和服装图像估计了自我和跨跨性别的注意力流。通过对多个流场进行采样,通过注意机制同时提取并合并了来自不同语义区域的特征级和像素级信息。它使衣服翘曲和身体合成,同时以端到端的方式导致照片现实的结果。在两个试用数据集上进行的广泛实验表明,我们提出的方法在定性和定量上都能达到最先进的性能。此外,对其他两个图像编辑任务进行的其他实验说明了我们用于多视图合成和图像动画方法的多功能性。
Virtual try-on aims to generate a photo-realistic fitting result given an in-shop garment and a reference person image. Existing methods usually build up multi-stage frameworks to deal with clothes warping and body blending respectively, or rely heavily on intermediate parser-based labels which may be noisy or even inaccurate. To solve the above challenges, we propose a single-stage try-on framework by developing a novel Deformable Attention Flow (DAFlow), which applies the deformable attention scheme to multi-flow estimation. With pose keypoints as the guidance only, the self- and cross-deformable attention flows are estimated for the reference person and the garment images, respectively. By sampling multiple flow fields, the feature-level and pixel-level information from different semantic areas are simultaneously extracted and merged through the attention mechanism. It enables clothes warping and body synthesizing at the same time which leads to photo-realistic results in an end-to-end manner. Extensive experiments on two try-on datasets demonstrate that our proposed method achieves state-of-the-art performance both qualitatively and quantitatively. Furthermore, additional experiments on the other two image editing tasks illustrate the versatility of our method for multi-view synthesis and image animation.